Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Unicode version

Theorem lcfrlem1 35192
Description: Lemma for lcfr 35235. Note that  X is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v  |-  V  =  ( Base `  U
)
lcfrlem1.s  |-  S  =  (Scalar `  U )
lcfrlem1.q  |-  .X.  =  ( .r `  S )
lcfrlem1.z  |-  .0.  =  ( 0g `  S )
lcfrlem1.i  |-  I  =  ( invr `  S
)
lcfrlem1.f  |-  F  =  (LFnl `  U )
lcfrlem1.d  |-  D  =  (LDual `  U )
lcfrlem1.t  |-  .x.  =  ( .s `  D )
lcfrlem1.m  |-  .-  =  ( -g `  D )
lcfrlem1.u  |-  ( ph  ->  U  e.  LVec )
lcfrlem1.e  |-  ( ph  ->  E  e.  F )
lcfrlem1.g  |-  ( ph  ->  G  e.  F )
lcfrlem1.x  |-  ( ph  ->  X  e.  V )
lcfrlem1.n  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
lcfrlem1.h  |-  H  =  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )
Assertion
Ref Expression
lcfrlem1  |-  ( ph  ->  ( H `  X
)  =  .0.  )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3  |-  H  =  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )
21fveq1i 5697 . 2  |-  ( H `
 X )  =  ( ( E  .-  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) `  X )
3 lcfrlem1.v . . . 4  |-  V  =  ( Base `  U
)
4 lcfrlem1.s . . . 4  |-  S  =  (Scalar `  U )
5 eqid 2443 . . . 4  |-  ( -g `  S )  =  (
-g `  S )
6 lcfrlem1.f . . . 4  |-  F  =  (LFnl `  U )
7 lcfrlem1.d . . . 4  |-  D  =  (LDual `  U )
8 lcfrlem1.m . . . 4  |-  .-  =  ( -g `  D )
9 lcfrlem1.u . . . . 5  |-  ( ph  ->  U  e.  LVec )
10 lveclmod 17192 . . . . 5  |-  ( U  e.  LVec  ->  U  e. 
LMod )
119, 10syl 16 . . . 4  |-  ( ph  ->  U  e.  LMod )
12 lcfrlem1.e . . . 4  |-  ( ph  ->  E  e.  F )
13 eqid 2443 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
14 lcfrlem1.t . . . . 5  |-  .x.  =  ( .s `  D )
154lvecdrng 17191 . . . . . . . 8  |-  ( U  e.  LVec  ->  S  e.  DivRing )
169, 15syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  DivRing )
17 lcfrlem1.g . . . . . . . 8  |-  ( ph  ->  G  e.  F )
18 lcfrlem1.x . . . . . . . 8  |-  ( ph  ->  X  e.  V )
194, 13, 3, 6lflcl 32714 . . . . . . . 8  |-  ( ( U  e.  LVec  /\  G  e.  F  /\  X  e.  V )  ->  ( G `  X )  e.  ( Base `  S
) )
209, 17, 18, 19syl3anc 1218 . . . . . . 7  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  S ) )
21 lcfrlem1.n . . . . . . 7  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
22 lcfrlem1.z . . . . . . . 8  |-  .0.  =  ( 0g `  S )
23 lcfrlem1.i . . . . . . . 8  |-  I  =  ( invr `  S
)
2413, 22, 23drnginvrcl 16854 . . . . . . 7  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  ( Base `  S
)  /\  ( G `  X )  =/=  .0.  )  ->  ( I `  ( G `  X ) )  e.  ( Base `  S ) )
2516, 20, 21, 24syl3anc 1218 . . . . . 6  |-  ( ph  ->  ( I `  ( G `  X )
)  e.  ( Base `  S ) )
264, 13, 3, 6lflcl 32714 . . . . . . 7  |-  ( ( U  e.  LVec  /\  E  e.  F  /\  X  e.  V )  ->  ( E `  X )  e.  ( Base `  S
) )
279, 12, 18, 26syl3anc 1218 . . . . . 6  |-  ( ph  ->  ( E `  X
)  e.  ( Base `  S ) )
28 lcfrlem1.q . . . . . . 7  |-  .X.  =  ( .r `  S )
294, 13, 28lmodmcl 16965 . . . . . 6  |-  ( ( U  e.  LMod  /\  (
I `  ( G `  X ) )  e.  ( Base `  S
)  /\  ( E `  X )  e.  (
Base `  S )
)  ->  ( (
I `  ( G `  X ) )  .X.  ( E `  X ) )  e.  ( Base `  S ) )
3011, 25, 27, 29syl3anc 1218 . . . . 5  |-  ( ph  ->  ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  e.  ( Base `  S
) )
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 32789 . . . 4  |-  ( ph  ->  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G )  e.  F )
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 32807 . . 3  |-  ( ph  ->  ( ( E  .-  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) `  X )  =  ( ( E `
 X ) (
-g `  S )
( ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) `  X
) ) )
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 32788 . . . . 5  |-  ( ph  ->  ( ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) `  X
)  =  ( ( G `  X ) 
.X.  ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) ) ) )
34 eqid 2443 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
3513, 22, 28, 34, 23drnginvrr 16857 . . . . . . . 8  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  ( Base `  S
)  /\  ( G `  X )  =/=  .0.  )  ->  ( ( G `
 X )  .X.  ( I `  ( G `  X )
) )  =  ( 1r `  S ) )
3616, 20, 21, 35syl3anc 1218 . . . . . . 7  |-  ( ph  ->  ( ( G `  X )  .X.  (
I `  ( G `  X ) ) )  =  ( 1r `  S ) )
3736oveq1d 6111 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 X )  .X.  ( I `  ( G `  X )
) )  .X.  ( E `  X )
)  =  ( ( 1r `  S ) 
.X.  ( E `  X ) ) )
384lmodrng 16961 . . . . . . . 8  |-  ( U  e.  LMod  ->  S  e. 
Ring )
3911, 38syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  Ring )
4013, 28rngass 16666 . . . . . . 7  |-  ( ( S  e.  Ring  /\  (
( G `  X
)  e.  ( Base `  S )  /\  (
I `  ( G `  X ) )  e.  ( Base `  S
)  /\  ( E `  X )  e.  (
Base `  S )
) )  ->  (
( ( G `  X )  .X.  (
I `  ( G `  X ) ) ) 
.X.  ( E `  X ) )  =  ( ( G `  X )  .X.  (
( I `  ( G `  X )
)  .X.  ( E `  X ) ) ) )
4139, 20, 25, 27, 40syl13anc 1220 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 X )  .X.  ( I `  ( G `  X )
) )  .X.  ( E `  X )
)  =  ( ( G `  X ) 
.X.  ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) ) ) )
4213, 28, 34rnglidm 16673 . . . . . . 7  |-  ( ( S  e.  Ring  /\  ( E `  X )  e.  ( Base `  S
) )  ->  (
( 1r `  S
)  .X.  ( E `  X ) )  =  ( E `  X
) )
4339, 27, 42syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( 1r `  S )  .X.  ( E `  X )
)  =  ( E `
 X ) )
4437, 41, 433eqtr3d 2483 . . . . 5  |-  ( ph  ->  ( ( G `  X )  .X.  (
( I `  ( G `  X )
)  .X.  ( E `  X ) ) )  =  ( E `  X ) )
4533, 44eqtrd 2475 . . . 4  |-  ( ph  ->  ( ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) `  X
)  =  ( E `
 X ) )
4645oveq2d 6112 . . 3  |-  ( ph  ->  ( ( E `  X ) ( -g `  S ) ( ( ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) `  X
) )  =  ( ( E `  X
) ( -g `  S
) ( E `  X ) ) )
474lmodfgrp 16962 . . . . 5  |-  ( U  e.  LMod  ->  S  e. 
Grp )
4811, 47syl 16 . . . 4  |-  ( ph  ->  S  e.  Grp )
4913, 22, 5grpsubid 15615 . . . 4  |-  ( ( S  e.  Grp  /\  ( E `  X )  e.  ( Base `  S
) )  ->  (
( E `  X
) ( -g `  S
) ( E `  X ) )  =  .0.  )
5048, 27, 49syl2anc 661 . . 3  |-  ( ph  ->  ( ( E `  X ) ( -g `  S ) ( E `
 X ) )  =  .0.  )
5132, 46, 503eqtrd 2479 . 2  |-  ( ph  ->  ( ( E  .-  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) `  X )  =  .0.  )
522, 51syl5eq 2487 1  |-  ( ph  ->  ( H `  X
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756    =/= wne 2611   ` cfv 5423  (class class class)co 6096   Basecbs 14179   .rcmulr 14244  Scalarcsca 14246   .scvsca 14247   0gc0g 14383   Grpcgrp 15415   -gcsg 15418   1rcur 16608   Ringcrg 16650   invrcinvr 16768   DivRingcdr 16837   LModclmod 16953   LVecclvec 17188  LFnlclfn 32707  LDualcld 32773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-n0 10585  df-z 10652  df-uz 10867  df-fz 11443  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-sca 14259  df-vsca 14260  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-sbg 15552  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-drng 16839  df-lmod 16955  df-lvec 17189  df-lfl 32708  df-ldual 32774
This theorem is referenced by:  lcfrlem3  35194
  Copyright terms: Public domain W3C validator