Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1N Structured version   Visualization version   Unicode version

Theorem lcfls1N 35148
Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfls1.c  |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }
lcfls1.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lcfls1N  |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
) ) )
Distinct variable groups:    f, F    f, G    f, L    ._|_ , f    Q, f
Allowed substitution hints:    ph( f)    C( f)

Proof of Theorem lcfls1N
StepHypRef Expression
1 lcfls1.g . . 3  |-  ( ph  ->  G  e.  F )
21biantrurd 515 . 2  |-  ( ph  ->  ( ( (  ._|_  `  (  ._|_  `  ( L `
 G ) ) )  =  ( L `
 G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q )  <->  ( G  e.  F  /\  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
) ) ) )
3 lcfls1.c . . . 4  |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }
43lcfls1lem 35147 . . 3  |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
)
5 3anass 995 . . 3  |-  ( ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
)  <->  ( G  e.  F  /\  ( ( 
._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
) )
64, 5bitri 257 . 2  |-  ( G  e.  C  <->  ( G  e.  F  /\  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
) ) )
72, 6syl6rbbr 272 1  |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   {crab 2753    C_ wss 3416   ` cfv 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-rex 2755  df-rab 2758  df-v 3059  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4417  df-iota 5565  df-fv 5609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator