Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6lem Structured version   Unicode version

Theorem lcfl6lem 36295
Description: Lemma for lcfl6 36297. A functional  G (whose kernel is closed by dochsnkr 36269) is comletely determined by a vector  X in the orthocomplement in its kernel at which the functional value is 1. Note that the  \  {  .0.  } in the  X hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6lem.h  |-  H  =  ( LHyp `  K
)
lcfl6lem.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfl6lem.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfl6lem.v  |-  V  =  ( Base `  U
)
lcfl6lem.a  |-  .+  =  ( +g  `  U )
lcfl6lem.t  |-  .x.  =  ( .s `  U )
lcfl6lem.s  |-  S  =  (Scalar `  U )
lcfl6lem.i  |-  .1.  =  ( 1r `  S )
lcfl6lem.r  |-  R  =  ( Base `  S
)
lcfl6lem.z  |-  .0.  =  ( 0g `  U )
lcfl6lem.f  |-  F  =  (LFnl `  U )
lcfl6lem.l  |-  L  =  (LKer `  U )
lcfl6lem.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfl6lem.g  |-  ( ph  ->  G  e.  F )
lcfl6lem.x  |-  ( ph  ->  X  e.  ( ( 
._|_  `  ( L `  G ) )  \  {  .0.  } ) )
lcfl6lem.y  |-  ( ph  ->  ( G `  X
)  =  .1.  )
Assertion
Ref Expression
lcfl6lem  |-  ( ph  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
Distinct variable groups:    v, k, w,  .+    .1. , k, w    ._|_ , k, v, w    R, k, v    S, k    .x. , k, v, w   
v, V    k, X, v, w    w,  .0.
Allowed substitution hints:    ph( w, v, k)    R( w)    S( w, v)    U( w, v, k)    .1. ( v)    F( w, v, k)    G( w, v, k)    H( w, v, k)    K( w, v, k)    L( w, v, k)    V( w, k)    W( w, v, k)    .0. ( v, k)

Proof of Theorem lcfl6lem
StepHypRef Expression
1 lcfl6lem.v . 2  |-  V  =  ( Base `  U
)
2 lcfl6lem.s . 2  |-  S  =  (Scalar `  U )
3 lcfl6lem.r . 2  |-  R  =  ( Base `  S
)
4 eqid 2467 . 2  |-  ( 0g
`  S )  =  ( 0g `  S
)
5 lcfl6lem.f . 2  |-  F  =  (LFnl `  U )
6 lcfl6lem.l . 2  |-  L  =  (LKer `  U )
7 lcfl6lem.h . . 3  |-  H  =  ( LHyp `  K
)
8 lcfl6lem.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
9 lcfl6lem.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
107, 8, 9dvhlvec 35906 . 2  |-  ( ph  ->  U  e.  LVec )
117, 8, 9dvhlmod 35907 . . . . 5  |-  ( ph  ->  U  e.  LMod )
12 lcfl6lem.g . . . . 5  |-  ( ph  ->  G  e.  F )
131, 5, 6, 11, 12lkrssv 33893 . . . 4  |-  ( ph  ->  ( L `  G
)  C_  V )
14 lcfl6lem.o . . . . 5  |-  ._|_  =  ( ( ocH `  K
) `  W )
157, 8, 1, 14dochssv 36152 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  G )  C_  V
)  ->  (  ._|_  `  ( L `  G
) )  C_  V
)
169, 13, 15syl2anc 661 . . 3  |-  ( ph  ->  (  ._|_  `  ( L `
 G ) ) 
C_  V )
17 lcfl6lem.x . . . 4  |-  ( ph  ->  X  e.  ( ( 
._|_  `  ( L `  G ) )  \  {  .0.  } ) )
1817eldifad 3488 . . 3  |-  ( ph  ->  X  e.  (  ._|_  `  ( L `  G
) ) )
1916, 18sseldd 3505 . 2  |-  ( ph  ->  X  e.  V )
20 lcfl6lem.z . . 3  |-  .0.  =  ( 0g `  U )
21 lcfl6lem.a . . 3  |-  .+  =  ( +g  `  U )
22 lcfl6lem.t . . 3  |-  .x.  =  ( .s `  U )
23 eqid 2467 . . 3  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) )
24 eldifsni 4153 . . . . 5  |-  ( X  e.  ( (  ._|_  `  ( L `  G
) )  \  {  .0.  } )  ->  X  =/=  .0.  )
2517, 24syl 16 . . . 4  |-  ( ph  ->  X  =/=  .0.  )
26 eldifsn 4152 . . . 4  |-  ( X  e.  ( V  \  {  .0.  } )  <->  ( X  e.  V  /\  X  =/= 
.0.  ) )
2719, 25, 26sylanbrc 664 . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
287, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27dochflcl 36272 . 2  |-  ( ph  ->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) )  e.  F
)
297, 14, 8, 1, 20, 5, 6, 9, 12, 17dochsnkr 36269 . . 3  |-  ( ph  ->  ( L `  G
)  =  (  ._|_  `  { X } ) )
307, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27dochsnkr2 36270 . . 3  |-  ( ph  ->  ( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) ) )  =  (  ._|_  `  { X } ) )
3129, 30eqtr4d 2511 . 2  |-  ( ph  ->  ( L `  G
)  =  ( L `
 ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) ) )
32 lcfl6lem.y . . 3  |-  ( ph  ->  ( G `  X
)  =  .1.  )
33 lcfl6lem.i . . . 4  |-  .1.  =  ( 1r `  S )
347, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23dochfl1 36273 . . 3  |-  ( ph  ->  ( ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) `  X )  =  .1.  )
3532, 34eqtr4d 2511 . 2  |-  ( ph  ->  ( G `  X
)  =  ( ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) ) `  X
) )
367, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17dochfln0 36274 . 2  |-  ( ph  ->  ( G `  X
)  =/=  ( 0g
`  S ) )
371, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36eqlkr3 33898 1  |-  ( ph  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    \ cdif 3473    C_ wss 3476   {csn 4027    |-> cmpt 4505   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14483   +g cplusg 14548  Scalarcsca 14551   .scvsca 14552   0gc0g 14688   1rcur 16940  LFnlclfn 33854  LKerclk 33882   HLchlt 34147   LHypclh 34780   DVecHcdvh 35875   ocHcoch 36144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-undef 6999  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-sca 14564  df-vsca 14565  df-0g 14690  df-poset 15426  df-plt 15438  df-lub 15454  df-glb 15455  df-join 15456  df-meet 15457  df-p0 15519  df-p1 15520  df-lat 15526  df-clat 15588  df-mnd 15725  df-submnd 15775  df-grp 15855  df-minusg 15856  df-sbg 15857  df-subg 15990  df-cntz 16147  df-lsm 16449  df-cmn 16593  df-abl 16594  df-mgp 16929  df-ur 16941  df-rng 16985  df-oppr 17053  df-dvdsr 17071  df-unit 17072  df-invr 17102  df-dvr 17113  df-drng 17178  df-lmod 17294  df-lss 17359  df-lsp 17398  df-lvec 17529  df-lsatoms 33773  df-lshyp 33774  df-lfl 33855  df-lkr 33883  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955  df-tgrp 35539  df-tendo 35551  df-edring 35553  df-dveca 35799  df-disoa 35826  df-dvech 35876  df-dib 35936  df-dic 35970  df-dih 36026  df-doch 36145  df-djh 36192
This theorem is referenced by:  lcfl6  36297
  Copyright terms: Public domain W3C validator