Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6 Structured version   Unicode version

Theorem lcfl6 35508
Description: Property of a functional with a closed kernel. Note that  ( L `  G )  =  V means the functional is zero by lkr0f 33102. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6.h  |-  H  =  ( LHyp `  K
)
lcfl6.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfl6.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfl6.v  |-  V  =  ( Base `  U
)
lcfl6.a  |-  .+  =  ( +g  `  U )
lcfl6.t  |-  .x.  =  ( .s `  U )
lcfl6.s  |-  S  =  (Scalar `  U )
lcfl6.r  |-  R  =  ( Base `  S
)
lcfl6.z  |-  .0.  =  ( 0g `  U )
lcfl6.f  |-  F  =  (LFnl `  U )
lcfl6.l  |-  L  =  (LKer `  U )
lcfl6.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcfl6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfl6.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lcfl6  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Distinct variable groups:    v, k, w,  .+    f, k, v, w, x,  ._|_    w,  .0. , x    x, C    f, G, x   
f, F    f, L, x    ph, x    R, k,
v    S, k, w, x   
v, V, x    x, U    .x. , k, v, w
Allowed substitution hints:    ph( w, v, f, k)    C( w, v, f, k)    .+ ( x, f)    R( x, w, f)    S( v, f)    .x. ( x, f)    U( w, v, f, k)    F( x, w, v, k)    G( w, v, k)    H( x, w, v, f, k)    K( x, w, v, f, k)    L( w, v, k)    V( w, f, k)    W( x, w, v, f, k)    .0. ( v, f, k)

Proof of Theorem lcfl6
StepHypRef Expression
1 df-ne 2650 . . . . 5  |-  ( ( L `  G )  =/=  V  <->  -.  ( L `  G )  =  V )
2 lcfl6.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 lcfl6.o . . . . . . . 8  |-  ._|_  =  ( ( ocH `  K
) `  W )
4 lcfl6.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
5 lcfl6.v . . . . . . . 8  |-  V  =  ( Base `  U
)
6 lcfl6.s . . . . . . . 8  |-  S  =  (Scalar `  U )
7 lcfl6.z . . . . . . . 8  |-  .0.  =  ( 0g `  U )
8 eqid 2454 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
9 lcfl6.f . . . . . . . 8  |-  F  =  (LFnl `  U )
10 lcfl6.l . . . . . . . 8  |-  L  =  (LKer `  U )
11 lcfl6.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
1211ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 lcfl6.g . . . . . . . . 9  |-  ( ph  ->  G  e.  F )
1413ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  G  e.  F )
15 lcfl6.c . . . . . . . . . . . . . 14  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
162, 3, 4, 5, 9, 10, 15, 11, 13lcfl2 35501 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) ) )
1716biimpa 484 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  e.  C )  ->  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) )
1817orcomd 388 . . . . . . . . . . 11  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =  V  \/  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
1918ord 377 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  C )  ->  ( -.  ( L `  G
)  =  V  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
201, 19syl5bi 217 . . . . . . . . 9  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =/=  V  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
2120imp 429 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =/=  V
)
222, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21dochkr1 35486 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  E. x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } ) ( G `  x )  =  ( 1r `  S ) )
232, 4, 11dvhlmod 35118 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LMod )
245, 9, 10, 23, 13lkrssv 33104 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( L `  G
)  C_  V )
252, 4, 5, 3dochssv 35363 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  G )  C_  V
)  ->  (  ._|_  `  ( L `  G
) )  C_  V
)
2611, 24, 25syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  (  ._|_  `  ( L `
 G ) ) 
C_  V )
2726ssdifd 3603 . . . . . . . . . . . 12  |-  ( ph  ->  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  C_  ( V  \  {  .0.  } ) )
2827ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  C_  ( V  \  {  .0.  } ) )
29 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  x  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )
3028, 29sseldd 3468 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  x  e.  ( V  \  {  .0.  } ) )
31 lcfl6.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  U )
32 lcfl6.t . . . . . . . . . . 11  |-  .x.  =  ( .s `  U )
33 lcfl6.r . . . . . . . . . . 11  |-  R  =  ( Base `  S
)
3411ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
3513ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  G  e.  F )
36 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( G `  x
)  =  ( 1r
`  S ) )
372, 3, 4, 5, 31, 32, 6, 8, 33, 7, 9, 10, 34, 35, 29, 36lcfl6lem 35506 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )
3830, 37jca 532 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
3938ex 434 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  (
( x  e.  ( (  ._|_  `  ( L `
 G ) ) 
\  {  .0.  }
)  /\  ( G `  x )  =  ( 1r `  S ) )  ->  ( x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) ) ) )
4039reximdv2 2931 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  ( E. x  e.  (
(  ._|_  `  ( L `  G ) )  \  {  .0.  } ) ( G `  x )  =  ( 1r `  S )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4122, 40mpd 15 . . . . . 6  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )
4241ex 434 . . . . 5  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =/=  V  ->  E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
431, 42syl5bir 218 . . . 4  |-  ( (
ph  /\  G  e.  C )  ->  ( -.  ( L `  G
)  =  V  ->  E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4443orrd 378 . . 3  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4544ex 434 . 2  |-  ( ph  ->  ( G  e.  C  ->  ( ( L `  G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
46 olc 384 . . . 4  |-  ( ( L `  G )  =  V  ->  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) )
4746, 16syl5ibr 221 . . 3  |-  ( ph  ->  ( ( L `  G )  =  V  ->  G  e.  C
) )
4811adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
49 eldifi 3589 . . . . . . . . . . 11  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
5049adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  x  e.  V )
5150snssd 4129 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  { x }  C_  V )
52 eqid 2454 . . . . . . . . . 10  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
532, 52, 4, 5, 3dochcl 35361 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { x }  C_  V )  ->  (  ._|_  `  { x }
)  e.  ran  (
( DIsoH `  K ) `  W ) )
5448, 51, 53syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  { x }
)  e.  ran  (
( DIsoH `  K ) `  W ) )
552, 52, 3dochoc 35375 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  {
x } )  e. 
ran  ( ( DIsoH `  K ) `  W
) )  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x }
) ) )  =  (  ._|_  `  { x } ) )
5648, 54, 55syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x }
) ) )  =  (  ._|_  `  { x } ) )
57563adant3 1008 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  (  ._|_  `  { x } ) ) )  =  (  ._|_  `  {
x } ) )
58 simp3 990 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )
5958fveq2d 5806 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  G
)  =  ( L `
 ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) ) )
60 eqid 2454 . . . . . . . . . . 11  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) )
61 simpr 461 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  x  e.  ( V  \  {  .0.  } ) )
622, 3, 4, 5, 7, 31, 32, 10, 6, 33, 60, 48, 61dochsnkr2 35481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )  =  (  ._|_  `  { x } ) )
63623adant3 1008 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  =  (  ._|_  `  { x } ) )
6459, 63eqtrd 2495 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  G
)  =  (  ._|_  `  { x } ) )
6564fveq2d 5806 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  ( L `  G ) )  =  (  ._|_  `  (  ._|_  `  { x } ) ) )
6665fveq2d 5806 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x } ) ) ) )
6757, 66, 643eqtr4d 2505 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
) )
68133ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  F )
6915, 68lcfl1 35500 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( G  e.  C  <->  ( 
._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) ) )
7067, 69mpbird 232 . . . 4  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  C )
7170rexlimdv3a 2949 . . 3  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  G  e.  C ) )
7247, 71jaod 380 . 2  |-  ( ph  ->  ( ( ( L `
 G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  C )
)
7345, 72impbid 191 1  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   E.wrex 2800   {crab 2803    \ cdif 3436    C_ wss 3439   {csn 3988    |-> cmpt 4461   ran crn 4952   ` cfv 5529   iota_crio 6163  (class class class)co 6203   Basecbs 14296   +g cplusg 14361  Scalarcsca 14364   .scvsca 14365   0gc0g 14501   1rcur 16735  LFnlclfn 33065  LKerclk 33093   HLchlt 33358   LHypclh 33991   DVecHcdvh 35086   DIsoHcdih 35236   ocHcoch 35355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-riotaBAD 32967
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-tpos 6858  df-undef 6905  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-sca 14377  df-vsca 14378  df-0g 14503  df-poset 15239  df-plt 15251  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-p0 15332  df-p1 15333  df-lat 15339  df-clat 15401  df-mnd 15538  df-submnd 15588  df-grp 15668  df-minusg 15669  df-sbg 15670  df-subg 15801  df-cntz 15958  df-lsm 16260  df-cmn 16404  df-abl 16405  df-mgp 16724  df-ur 16736  df-rng 16780  df-oppr 16848  df-dvdsr 16866  df-unit 16867  df-invr 16897  df-dvr 16908  df-drng 16967  df-lmod 17083  df-lss 17147  df-lsp 17186  df-lvec 17317  df-lsatoms 32984  df-lshyp 32985  df-lfl 33066  df-lkr 33094  df-oposet 33184  df-ol 33186  df-oml 33187  df-covers 33274  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-llines 33505  df-lplanes 33506  df-lvols 33507  df-lines 33508  df-psubsp 33510  df-pmap 33511  df-padd 33803  df-lhyp 33995  df-laut 33996  df-ldil 34111  df-ltrn 34112  df-trl 34166  df-tgrp 34750  df-tendo 34762  df-edring 34764  df-dveca 35010  df-disoa 35037  df-dvech 35087  df-dib 35147  df-dic 35181  df-dih 35237  df-doch 35356  df-djh 35403
This theorem is referenced by:  lcfl7N  35509  lcfrlem9  35558
  Copyright terms: Public domain W3C validator