Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Unicode version

Theorem lcdvsubval 37047
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h  |-  H  =  ( LHyp `  K
)
lcdvsubval.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcdvsubval.v  |-  V  =  ( Base `  U
)
lcdvsubval.r  |-  R  =  (Scalar `  U )
lcdvsubval.s  |-  S  =  ( -g `  R
)
lcdvsubval.c  |-  C  =  ( (LCDual `  K
) `  W )
lcdvsubval.d  |-  D  =  ( Base `  C
)
lcdvsubval.m  |-  .-  =  ( -g `  C )
lcdvsubval.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcdvsubval.f  |-  ( ph  ->  F  e.  D )
lcdvsubval.g  |-  ( ph  ->  G  e.  D )
lcdvsubval.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lcdvsubval  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F `  X ) S ( G `  X ) ) )

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 lcdvsubval.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
3 lcdvsubval.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 37021 . . . 4  |-  ( ph  ->  C  e.  LMod )
5 lcdvsubval.f . . . 4  |-  ( ph  ->  F  e.  D )
6 lcdvsubval.g . . . 4  |-  ( ph  ->  G  e.  D )
7 lcdvsubval.d . . . . 5  |-  D  =  ( Base `  C
)
8 eqid 2441 . . . . 5  |-  ( +g  `  C )  =  ( +g  `  C )
9 lcdvsubval.m . . . . 5  |-  .-  =  ( -g `  C )
10 eqid 2441 . . . . 5  |-  (Scalar `  C )  =  (Scalar `  C )
11 eqid 2441 . . . . 5  |-  ( .s
`  C )  =  ( .s `  C
)
12 eqid 2441 . . . . 5  |-  ( invg `  (Scalar `  C ) )  =  ( invg `  (Scalar `  C ) )
13 eqid 2441 . . . . 5  |-  ( 1r
`  (Scalar `  C )
)  =  ( 1r
`  (Scalar `  C )
)
147, 8, 9, 10, 11, 12, 13lmodvsubval2 17433 . . . 4  |-  ( ( C  e.  LMod  /\  F  e.  D  /\  G  e.  D )  ->  ( F  .-  G )  =  ( F ( +g  `  C ) ( ( ( invg `  (Scalar `  C ) ) `
 ( 1r `  (Scalar `  C ) ) ) ( .s `  C ) G ) ) )
154, 5, 6, 14syl3anc 1227 . . 3  |-  ( ph  ->  ( F  .-  G
)  =  ( F ( +g  `  C
) ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) )
1615fveq1d 5854 . 2  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F ( +g  `  C
) ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) `
 X ) )
17 lcdvsubval.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
18 lcdvsubval.v . . 3  |-  V  =  ( Base `  U
)
19 lcdvsubval.r . . 3  |-  R  =  (Scalar `  U )
20 eqid 2441 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
21 eqid 2441 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2210lmodfgrp 17389 . . . . . . 7  |-  ( C  e.  LMod  ->  (Scalar `  C )  e.  Grp )
234, 22syl 16 . . . . . 6  |-  ( ph  ->  (Scalar `  C )  e.  Grp )
2410lmodring 17388 . . . . . . . 8  |-  ( C  e.  LMod  ->  (Scalar `  C )  e.  Ring )
254, 24syl 16 . . . . . . 7  |-  ( ph  ->  (Scalar `  C )  e.  Ring )
26 eqid 2441 . . . . . . . 8  |-  ( Base `  (Scalar `  C )
)  =  ( Base `  (Scalar `  C )
)
2726, 13ringidcl 17087 . . . . . . 7  |-  ( (Scalar `  C )  e.  Ring  -> 
( 1r `  (Scalar `  C ) )  e.  ( Base `  (Scalar `  C ) ) )
2825, 27syl 16 . . . . . 6  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  e.  ( Base `  (Scalar `  C ) ) )
2926, 12grpinvcl 15964 . . . . . 6  |-  ( ( (Scalar `  C )  e.  Grp  /\  ( 1r
`  (Scalar `  C )
)  e.  ( Base `  (Scalar `  C )
) )  ->  (
( invg `  (Scalar `  C ) ) `
 ( 1r `  (Scalar `  C ) ) )  e.  ( Base `  (Scalar `  C )
) )
3023, 28, 29syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  e.  (
Base `  (Scalar `  C
) ) )
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 37029 . . . . 5  |-  ( ph  ->  ( Base `  (Scalar `  C ) )  =  ( Base `  R
) )
3230, 31eleqtrd 2531 . . . 4  |-  ( ph  ->  ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  e.  (
Base `  R )
)
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 37034 . . 3  |-  ( ph  ->  ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G )  e.  D )
34 lcdvsubval.x . . 3  |-  ( ph  ->  X  e.  V )
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 37027 . 2  |-  ( ph  ->  ( ( F ( +g  `  C ) ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) `
 X )  =  ( ( F `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) ) )
36 eqid 2441 . . . . . . . . 9  |-  ( invg `  R )  =  ( invg `  R )
371, 17, 19, 36, 2, 10, 12, 3lcdneg 37039 . . . . . . . 8  |-  ( ph  ->  ( invg `  (Scalar `  C ) )  =  ( invg `  R ) )
38 eqid 2441 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 1r `  R
)
391, 17, 19, 38, 2, 10, 13, 3lcd1 37038 . . . . . . . 8  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  =  ( 1r `  R
) )
4037, 39fveq12d 5858 . . . . . . 7  |-  ( ph  ->  ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
4140oveq1d 6292 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G )  =  ( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .s `  C ) G ) )
4241fveq1d 5854 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) `  X )  =  ( ( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .s `  C ) G ) `  X
) )
43 eqid 2441 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
441, 17, 3dvhlmod 36539 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
4519lmodring 17388 . . . . . . . . 9  |-  ( U  e.  LMod  ->  R  e. 
Ring )
4644, 45syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
47 ringgrp 17071 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4846, 47syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
4919, 21, 38lmod1cl 17407 . . . . . . . 8  |-  ( U  e.  LMod  ->  ( 1r
`  R )  e.  ( Base `  R
) )
5044, 49syl 16 . . . . . . 7  |-  ( ph  ->  ( 1r `  R
)  e.  ( Base `  R ) )
5121, 36grpinvcl 15964 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  ( Base `  R
) )  ->  (
( invg `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
5248, 50, 51syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( invg `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 37033 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  R
) `  ( 1r `  R ) ) ( .s `  C ) G ) `  X
)  =  ( ( G `  X ) ( .r `  R
) ( ( invg `  R ) `
 ( 1r `  R ) ) ) )
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 37025 . . . . . 6  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  R ) )
5521, 43, 38, 36, 46, 54rngnegr 17109 . . . . 5  |-  ( ph  ->  ( ( G `  X ) ( .r
`  R ) ( ( invg `  R ) `  ( 1r `  R ) ) )  =  ( ( invg `  R
) `  ( G `  X ) ) )
5642, 53, 553eqtrd 2486 . . . 4  |-  ( ph  ->  ( ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) `  X )  =  ( ( invg `  R ) `  ( G `  X )
) )
5756oveq2d 6293 . . 3  |-  ( ph  ->  ( ( F `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) )  =  ( ( F `  X ) ( +g  `  R
) ( ( invg `  R ) `
 ( G `  X ) ) ) )
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 37025 . . . 4  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  R ) )
59 lcdvsubval.s . . . . 5  |-  S  =  ( -g `  R
)
6021, 20, 36, 59grpsubval 15962 . . . 4  |-  ( ( ( F `  X
)  e.  ( Base `  R )  /\  ( G `  X )  e.  ( Base `  R
) )  ->  (
( F `  X
) S ( G `
 X ) )  =  ( ( F `
 X ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  X )
) ) )
6158, 54, 60syl2anc 661 . . 3  |-  ( ph  ->  ( ( F `  X ) S ( G `  X ) )  =  ( ( F `  X ) ( +g  `  R
) ( ( invg `  R ) `
 ( G `  X ) ) ) )
6257, 61eqtr4d 2485 . 2  |-  ( ph  ->  ( ( F `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) )  =  ( ( F `  X ) S ( G `  X ) ) )
6316, 35, 623eqtrd 2486 1  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F `  X ) S ( G `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   ` cfv 5574  (class class class)co 6277   Basecbs 14504   +g cplusg 14569   .rcmulr 14570  Scalarcsca 14572   .scvsca 14573   Grpcgrp 15922   invgcminusg 15923   -gcsg 15924   1rcur 17021   Ringcrg 17066   LModclmod 17380   HLchlt 34777   LHypclh 35410   DVecHcdvh 36507  LCDualclcd 37015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-riotaBAD 34386
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-tpos 6953  df-undef 7000  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-n0 10797  df-z 10866  df-uz 11086  df-fz 11677  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-sca 14585  df-vsca 14586  df-0g 14711  df-mre 14855  df-mrc 14856  df-acs 14858  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-grp 15926  df-minusg 15927  df-sbg 15928  df-subg 16067  df-cntz 16224  df-oppg 16250  df-lsm 16525  df-cmn 16669  df-abl 16670  df-mgp 17010  df-ur 17022  df-ring 17068  df-oppr 17140  df-dvdsr 17158  df-unit 17159  df-invr 17189  df-dvr 17200  df-drng 17266  df-lmod 17382  df-lss 17447  df-lsp 17486  df-lvec 17617  df-lsatoms 34403  df-lshyp 34404  df-lcv 34446  df-lfl 34485  df-lkr 34513  df-ldual 34551  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-llines 34924  df-lplanes 34925  df-lvols 34926  df-lines 34927  df-psubsp 34929  df-pmap 34930  df-padd 35222  df-lhyp 35414  df-laut 35415  df-ldil 35530  df-ltrn 35531  df-trl 35586  df-tgrp 36171  df-tendo 36183  df-edring 36185  df-dveca 36431  df-disoa 36458  df-dvech 36508  df-dib 36568  df-dic 36602  df-dih 36658  df-doch 36777  df-djh 36824  df-lcdual 37016
This theorem is referenced by:  hdmapinvlem3  37352
  Copyright terms: Public domain W3C validator