Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Unicode version

Theorem lcdvsubval 34985
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h  |-  H  =  ( LHyp `  K
)
lcdvsubval.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcdvsubval.v  |-  V  =  ( Base `  U
)
lcdvsubval.r  |-  R  =  (Scalar `  U )
lcdvsubval.s  |-  S  =  ( -g `  R
)
lcdvsubval.c  |-  C  =  ( (LCDual `  K
) `  W )
lcdvsubval.d  |-  D  =  ( Base `  C
)
lcdvsubval.m  |-  .-  =  ( -g `  C )
lcdvsubval.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcdvsubval.f  |-  ( ph  ->  F  e.  D )
lcdvsubval.g  |-  ( ph  ->  G  e.  D )
lcdvsubval.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lcdvsubval  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F `  X ) S ( G `  X ) ) )

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 lcdvsubval.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
3 lcdvsubval.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 34959 . . . 4  |-  ( ph  ->  C  e.  LMod )
5 lcdvsubval.f . . . 4  |-  ( ph  ->  F  e.  D )
6 lcdvsubval.g . . . 4  |-  ( ph  ->  G  e.  D )
7 lcdvsubval.d . . . . 5  |-  D  =  ( Base `  C
)
8 eqid 2441 . . . . 5  |-  ( +g  `  C )  =  ( +g  `  C )
9 lcdvsubval.m . . . . 5  |-  .-  =  ( -g `  C )
10 eqid 2441 . . . . 5  |-  (Scalar `  C )  =  (Scalar `  C )
11 eqid 2441 . . . . 5  |-  ( .s
`  C )  =  ( .s `  C
)
12 eqid 2441 . . . . 5  |-  ( invg `  (Scalar `  C ) )  =  ( invg `  (Scalar `  C ) )
13 eqid 2441 . . . . 5  |-  ( 1r
`  (Scalar `  C )
)  =  ( 1r
`  (Scalar `  C )
)
147, 8, 9, 10, 11, 12, 13lmodvsubval2 16980 . . . 4  |-  ( ( C  e.  LMod  /\  F  e.  D  /\  G  e.  D )  ->  ( F  .-  G )  =  ( F ( +g  `  C ) ( ( ( invg `  (Scalar `  C ) ) `
 ( 1r `  (Scalar `  C ) ) ) ( .s `  C ) G ) ) )
154, 5, 6, 14syl3anc 1213 . . 3  |-  ( ph  ->  ( F  .-  G
)  =  ( F ( +g  `  C
) ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) )
1615fveq1d 5690 . 2  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F ( +g  `  C
) ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) `
 X ) )
17 lcdvsubval.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
18 lcdvsubval.v . . 3  |-  V  =  ( Base `  U
)
19 lcdvsubval.r . . 3  |-  R  =  (Scalar `  U )
20 eqid 2441 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
21 eqid 2441 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2210lmodfgrp 16937 . . . . . . 7  |-  ( C  e.  LMod  ->  (Scalar `  C )  e.  Grp )
234, 22syl 16 . . . . . 6  |-  ( ph  ->  (Scalar `  C )  e.  Grp )
2410lmodrng 16936 . . . . . . . 8  |-  ( C  e.  LMod  ->  (Scalar `  C )  e.  Ring )
254, 24syl 16 . . . . . . 7  |-  ( ph  ->  (Scalar `  C )  e.  Ring )
26 eqid 2441 . . . . . . . 8  |-  ( Base `  (Scalar `  C )
)  =  ( Base `  (Scalar `  C )
)
2726, 13rngidcl 16655 . . . . . . 7  |-  ( (Scalar `  C )  e.  Ring  -> 
( 1r `  (Scalar `  C ) )  e.  ( Base `  (Scalar `  C ) ) )
2825, 27syl 16 . . . . . 6  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  e.  ( Base `  (Scalar `  C ) ) )
2926, 12grpinvcl 15576 . . . . . 6  |-  ( ( (Scalar `  C )  e.  Grp  /\  ( 1r
`  (Scalar `  C )
)  e.  ( Base `  (Scalar `  C )
) )  ->  (
( invg `  (Scalar `  C ) ) `
 ( 1r `  (Scalar `  C ) ) )  e.  ( Base `  (Scalar `  C )
) )
3023, 28, 29syl2anc 656 . . . . 5  |-  ( ph  ->  ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  e.  (
Base `  (Scalar `  C
) ) )
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 34967 . . . . 5  |-  ( ph  ->  ( Base `  (Scalar `  C ) )  =  ( Base `  R
) )
3230, 31eleqtrd 2517 . . . 4  |-  ( ph  ->  ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  e.  (
Base `  R )
)
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 34972 . . 3  |-  ( ph  ->  ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G )  e.  D )
34 lcdvsubval.x . . 3  |-  ( ph  ->  X  e.  V )
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 34965 . 2  |-  ( ph  ->  ( ( F ( +g  `  C ) ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) `
 X )  =  ( ( F `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) ) )
36 eqid 2441 . . . . . . . . 9  |-  ( invg `  R )  =  ( invg `  R )
371, 17, 19, 36, 2, 10, 12, 3lcdneg 34977 . . . . . . . 8  |-  ( ph  ->  ( invg `  (Scalar `  C ) )  =  ( invg `  R ) )
38 eqid 2441 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 1r `  R
)
391, 17, 19, 38, 2, 10, 13, 3lcd1 34976 . . . . . . . 8  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  =  ( 1r `  R
) )
4037, 39fveq12d 5694 . . . . . . 7  |-  ( ph  ->  ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
4140oveq1d 6105 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G )  =  ( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .s `  C ) G ) )
4241fveq1d 5690 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) `  X )  =  ( ( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .s `  C ) G ) `  X
) )
43 eqid 2441 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
441, 17, 3dvhlmod 34477 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
4519lmodrng 16936 . . . . . . . . 9  |-  ( U  e.  LMod  ->  R  e. 
Ring )
4644, 45syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
47 rnggrp 16640 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4846, 47syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
4919, 21, 38lmod1cl 16955 . . . . . . . 8  |-  ( U  e.  LMod  ->  ( 1r
`  R )  e.  ( Base `  R
) )
5044, 49syl 16 . . . . . . 7  |-  ( ph  ->  ( 1r `  R
)  e.  ( Base `  R ) )
5121, 36grpinvcl 15576 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  ( Base `  R
) )  ->  (
( invg `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
5248, 50, 51syl2anc 656 . . . . . 6  |-  ( ph  ->  ( ( invg `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 34971 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  R
) `  ( 1r `  R ) ) ( .s `  C ) G ) `  X
)  =  ( ( G `  X ) ( .r `  R
) ( ( invg `  R ) `
 ( 1r `  R ) ) ) )
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 34963 . . . . . 6  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  R ) )
5521, 43, 38, 36, 46, 54rngnegr 16676 . . . . 5  |-  ( ph  ->  ( ( G `  X ) ( .r
`  R ) ( ( invg `  R ) `  ( 1r `  R ) ) )  =  ( ( invg `  R
) `  ( G `  X ) ) )
5642, 53, 553eqtrd 2477 . . . 4  |-  ( ph  ->  ( ( ( ( invg `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) `  X )  =  ( ( invg `  R ) `  ( G `  X )
) )
5756oveq2d 6106 . . 3  |-  ( ph  ->  ( ( F `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) )  =  ( ( F `  X ) ( +g  `  R
) ( ( invg `  R ) `
 ( G `  X ) ) ) )
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 34963 . . . 4  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  R ) )
59 lcdvsubval.s . . . . 5  |-  S  =  ( -g `  R
)
6021, 20, 36, 59grpsubval 15574 . . . 4  |-  ( ( ( F `  X
)  e.  ( Base `  R )  /\  ( G `  X )  e.  ( Base `  R
) )  ->  (
( F `  X
) S ( G `
 X ) )  =  ( ( F `
 X ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  X )
) ) )
6158, 54, 60syl2anc 656 . . 3  |-  ( ph  ->  ( ( F `  X ) S ( G `  X ) )  =  ( ( F `  X ) ( +g  `  R
) ( ( invg `  R ) `
 ( G `  X ) ) ) )
6257, 61eqtr4d 2476 . 2  |-  ( ph  ->  ( ( F `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) )  =  ( ( F `  X ) S ( G `  X ) ) )
6316, 35, 623eqtrd 2477 1  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F `  X ) S ( G `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   .rcmulr 14235  Scalarcsca 14237   .scvsca 14238   Grpcgrp 15406   invgcminusg 15407   -gcsg 15409   1rcur 16593   Ringcrg 16635   LModclmod 16928   HLchlt 32717   LHypclh 33350   DVecHcdvh 34445  LCDualclcd 34953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-riotaBAD 32326
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-undef 6788  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-0g 14376  df-mre 14520  df-mrc 14521  df-acs 14523  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-subg 15671  df-cntz 15828  df-oppg 15854  df-lsm 16128  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-dvr 16765  df-drng 16814  df-lmod 16930  df-lss 16992  df-lsp 17031  df-lvec 17162  df-lsatoms 32343  df-lshyp 32344  df-lcv 32386  df-lfl 32425  df-lkr 32453  df-ldual 32491  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-llines 32864  df-lplanes 32865  df-lvols 32866  df-lines 32867  df-psubsp 32869  df-pmap 32870  df-padd 33162  df-lhyp 33354  df-laut 33355  df-ldil 33470  df-ltrn 33471  df-trl 33525  df-tgrp 34109  df-tendo 34121  df-edring 34123  df-dveca 34369  df-disoa 34396  df-dvech 34446  df-dib 34506  df-dic 34540  df-dih 34596  df-doch 34715  df-djh 34762  df-lcdual 34954
This theorem is referenced by:  hdmapinvlem3  35290
  Copyright terms: Public domain W3C validator