Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdfval Structured version   Unicode version

Theorem lcdfval 35125
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypothesis
Ref Expression
lcdval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lcdfval  |-  ( K  e.  X  ->  (LCDual `  K )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) ) )
Distinct variable groups:    w, H    w, f, K
Allowed substitution hints:    H( f)    X( w, f)

Proof of Theorem lcdfval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3089 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5881 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 lcdval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2481 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5881 . . . . . . 7  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 5883 . . . . . 6  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
76fveq2d 5885 . . . . 5  |-  ( k  =  K  ->  (LDual `  ( ( DVecH `  k
) `  w )
)  =  (LDual `  ( ( DVecH `  K
) `  w )
) )
86fveq2d 5885 . . . . . 6  |-  ( k  =  K  ->  (LFnl `  ( ( DVecH `  k
) `  w )
)  =  (LFnl `  ( ( DVecH `  K
) `  w )
) )
9 fveq2 5881 . . . . . . . . 9  |-  ( k  =  K  ->  ( ocH `  k )  =  ( ocH `  K
) )
109fveq1d 5883 . . . . . . . 8  |-  ( k  =  K  ->  (
( ocH `  k
) `  w )  =  ( ( ocH `  K ) `  w
) )
116fveq2d 5885 . . . . . . . . . 10  |-  ( k  =  K  ->  (LKer `  ( ( DVecH `  k
) `  w )
)  =  (LKer `  ( ( DVecH `  K
) `  w )
) )
1211fveq1d 5883 . . . . . . . . 9  |-  ( k  =  K  ->  (
(LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) )
1310, 12fveq12d 5887 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  =  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )
1410, 13fveq12d 5887 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) ) )
1514, 12eqeq12d 2444 . . . . . 6  |-  ( k  =  K  ->  (
( ( ( ocH `  k ) `  w
) `  ( (
( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )  <->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) ) )
168, 15rabeqbidv 3075 . . . . 5  |-  ( k  =  K  ->  { f  e.  (LFnl `  (
( DVecH `  k ) `  w ) )  |  ( ( ( ocH `  k ) `  w
) `  ( (
( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f ) }  =  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } )
177, 16oveq12d 6323 . . . 4  |-  ( k  =  K  ->  (
(LDual `  ( ( DVecH `  k ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  k ) `  w ) )  |  ( ( ( ocH `  k ) `  w
) `  ( (
( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f ) } )  =  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) )
184, 17mpteq12dv 4502 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( (LDual `  ( ( DVecH `  k
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  k
) `  w )
)  |  ( ( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f ) } ) )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) } ) ) )
19 df-lcdual 35124 . . 3  |- LCDual  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( (LDual `  ( ( DVecH `  k
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  k
) `  w )
)  |  ( ( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f ) } ) ) )
20 fvex 5891 . . . . 5  |-  ( LHyp `  K )  e.  _V
213, 20eqeltri 2503 . . . 4  |-  H  e. 
_V
2221mptex 6151 . . 3  |-  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) } ) )  e.  _V
2318, 19, 22fvmpt 5964 . 2  |-  ( K  e.  _V  ->  (LCDual `  K )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) ) )
241, 23syl 17 1  |-  ( K  e.  X  ->  (LCDual `  K )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1872   {crab 2775   _Vcvv 3080    |-> cmpt 4482   ` cfv 5601  (class class class)co 6305   ↾s cress 15121  LFnlclfn 32592  LKerclk 32620  LDualcld 32658   LHypclh 33518   DVecHcdvh 34615   ocHcoch 34884  LCDualclcd 35123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-lcdual 35124
This theorem is referenced by:  lcdval  35126
  Copyright terms: Public domain W3C validator