![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcd0v2 | Structured version Visualization version Unicode version |
Description: The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015.) |
Ref | Expression |
---|---|
lcd0v2.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcd0v2.u |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcd0v2.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcd0v2.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcd0v2.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcd0v2.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcd0v2.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lcd0v2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcd0v2.h |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lcd0v2.u |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqid 2462 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eqid 2462 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eqid 2462 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lcd0v2.c |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | lcd0v2.o |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | lcd0v2.k |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcd0v 35224 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | lcd0v2.d |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | lcd0v2.z |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 1, 2, 8 | dvhlmod 34723 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 3, 4, 5, 10, 11, 12 | ldual0v 32761 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 9, 13 | eqtr4d 2499 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-rep 4529 ax-sep 4539 ax-nul 4548 ax-pow 4595 ax-pr 4653 ax-un 6610 ax-cnex 9621 ax-resscn 9622 ax-1cn 9623 ax-icn 9624 ax-addcl 9625 ax-addrcl 9626 ax-mulcl 9627 ax-mulrcl 9628 ax-mulcom 9629 ax-addass 9630 ax-mulass 9631 ax-distr 9632 ax-i2m1 9633 ax-1ne0 9634 ax-1rid 9635 ax-rnegex 9636 ax-rrecex 9637 ax-cnre 9638 ax-pre-lttri 9639 ax-pre-lttrn 9640 ax-pre-ltadd 9641 ax-pre-mulgt0 9642 ax-riotaBAD 32570 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1458 df-fal 1461 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-nel 2636 df-ral 2754 df-rex 2755 df-reu 2756 df-rmo 2757 df-rab 2758 df-v 3059 df-sbc 3280 df-csb 3376 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-pss 3432 df-nul 3744 df-if 3894 df-pw 3965 df-sn 3981 df-pr 3983 df-tp 3985 df-op 3987 df-uni 4213 df-int 4249 df-iun 4294 df-iin 4295 df-br 4417 df-opab 4476 df-mpt 4477 df-tr 4512 df-eprel 4764 df-id 4768 df-po 4774 df-so 4775 df-fr 4812 df-we 4814 df-xp 4859 df-rel 4860 df-cnv 4861 df-co 4862 df-dm 4863 df-rn 4864 df-res 4865 df-ima 4866 df-pred 5399 df-ord 5445 df-on 5446 df-lim 5447 df-suc 5448 df-iota 5565 df-fun 5603 df-fn 5604 df-f 5605 df-f1 5606 df-fo 5607 df-f1o 5608 df-fv 5609 df-riota 6277 df-ov 6318 df-oprab 6319 df-mpt2 6320 df-of 6558 df-om 6720 df-1st 6820 df-2nd 6821 df-tpos 6999 df-undef 7046 df-wrecs 7054 df-recs 7116 df-rdg 7154 df-1o 7208 df-oadd 7212 df-er 7389 df-map 7500 df-en 7596 df-dom 7597 df-sdom 7598 df-fin 7599 df-pnf 9703 df-mnf 9704 df-xr 9705 df-ltxr 9706 df-le 9707 df-sub 9888 df-neg 9889 df-nn 10638 df-2 10696 df-3 10697 df-4 10698 df-5 10699 df-6 10700 df-n0 10899 df-z 10967 df-uz 11189 df-fz 11814 df-struct 15172 df-ndx 15173 df-slot 15174 df-base 15175 df-sets 15176 df-ress 15177 df-plusg 15252 df-mulr 15253 df-sca 15255 df-vsca 15256 df-0g 15389 df-mre 15541 df-mrc 15542 df-acs 15544 df-preset 16222 df-poset 16240 df-plt 16253 df-lub 16269 df-glb 16270 df-join 16271 df-meet 16272 df-p0 16334 df-p1 16335 df-lat 16341 df-clat 16403 df-mgm 16537 df-sgrp 16576 df-mnd 16586 df-submnd 16632 df-grp 16722 df-minusg 16723 df-sbg 16724 df-subg 16863 df-cntz 17020 df-oppg 17046 df-lsm 17337 df-cmn 17481 df-abl 17482 df-mgp 17773 df-ur 17785 df-ring 17831 df-oppr 17900 df-dvdsr 17918 df-unit 17919 df-invr 17949 df-dvr 17960 df-drng 18026 df-lmod 18142 df-lss 18205 df-lsp 18244 df-lvec 18375 df-lsatoms 32587 df-lshyp 32588 df-lcv 32630 df-lfl 32669 df-lkr 32697 df-ldual 32735 df-oposet 32787 df-ol 32789 df-oml 32790 df-covers 32877 df-ats 32878 df-atl 32909 df-cvlat 32933 df-hlat 32962 df-llines 33108 df-lplanes 33109 df-lvols 33110 df-lines 33111 df-psubsp 33113 df-pmap 33114 df-padd 33406 df-lhyp 33598 df-laut 33599 df-ldil 33714 df-ltrn 33715 df-trl 33770 df-tgrp 34355 df-tendo 34367 df-edring 34369 df-dveca 34615 df-disoa 34642 df-dvech 34692 df-dib 34752 df-dic 34786 df-dih 34842 df-doch 34961 df-djh 35008 df-lcdual 35200 |
This theorem is referenced by: lcdlkreqN 35235 hvmap1o2 35378 |
Copyright terms: Public domain | W3C validator |