MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbzbi Structured version   Unicode version

Theorem lbzbi 11241
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem lbzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1751 . . 3  |-  F/ x  A  C_  RR
2 nfre1 2884 . . 3  |-  F/ x E. x  e.  ZZ  A. y  e.  A  x  <_  y
3 btwnz 11026 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  /\  E. z  e.  ZZ  x  <  z ) )
43simpld 460 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  ZZ  z  <  x
)
5 ssel2 3456 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
6 zre 10930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ZZ  ->  z  e.  RR )
7 ltleletr 9715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
86, 7syl3an1 1297 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
98expd 437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) )
1093expia 1207 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( y  e.  RR  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y )
) ) )
115, 10syl5 33 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( ( A  C_  RR  /\  y  e.  A
)  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1211expdimp 438 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( y  e.  A  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1312com23 81 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( y  e.  A  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1413imp 430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  (
y  e.  A  -> 
( x  <_  y  ->  z  <_  y )
) )
1514ralrimiv 2835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  A. y  e.  A  ( x  <_  y  ->  z  <_  y ) )
16 ralim 2812 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  A  (
x  <_  y  ->  z  <_  y )  -> 
( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1817ex 435 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
1918anasss 651 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  ( x  e.  RR  /\  A  C_  RR )
)  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2019expcom 436 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2120com23 81 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2221imp 430 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2322imdistand 696 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  (
z  e.  ZZ  /\  A. y  e.  A  z  <_  y ) ) )
24 breq1 4420 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <_  y  <->  z  <_  y ) )
2524ralbidv 2862 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  z  <_  y ) )
2625rspcev 3179 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  A. y  e.  A  z  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y )
2723, 26syl6 34 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
2827ex 435 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
2928com23 81 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3029ancomsd 455 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( A. y  e.  A  x  <_  y  /\  z  e.  ZZ )  ->  ( z  < 
x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3130expdimp 438 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) ) )
3231rexlimdv 2913 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3332anasss 651 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  A. y  e.  A  x  <_  y ) )  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3433expcom 436 . . . . . 6  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
354, 34mpdi 43 . . . . 5  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3635ex 435 . . . 4  |-  ( A 
C_  RR  ->  ( A. y  e.  A  x  <_  y  ->  ( x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3736com23 81 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
381, 2, 37rexlimd 2907 . 2  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
39 zssre 10933 . . 3  |-  ZZ  C_  RR
40 ssrexv 3523 . . 3  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y ) )
4139, 40ax-mp 5 . 2  |-  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y
)
4238, 41impbid1 206 1  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1867   A.wral 2773   E.wrex 2774    C_ wss 3433   class class class wbr 4417   RRcr 9527    < clt 9664    <_ cle 9665   ZZcz 10926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-en 7569  df-dom 7570  df-sdom 7571  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-nn 10599  df-z 10927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator