MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbzbi Structured version   Unicode version

Theorem lbzbi 10948
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem lbzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1673 . . 3  |-  F/ x  A  C_  RR
2 nfre1 2777 . . 3  |-  F/ x E. x  e.  ZZ  A. y  e.  A  x  <_  y
3 btwnz 10749 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  /\  E. z  e.  ZZ  x  <  z ) )
43simpld 459 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  ZZ  z  <  x
)
5 ssel2 3356 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
6 zre 10655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ZZ  ->  z  e.  RR )
7 ltletr 9471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <  y
) )
8 ltle 9468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  ->  z  <_  y )
)
983adant2 1007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
z  <  y  ->  z  <_  y ) )
107, 9syld 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
116, 10syl3an1 1251 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
1211expd 436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) )
13123expia 1189 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( y  e.  RR  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y )
) ) )
145, 13syl5 32 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( ( A  C_  RR  /\  y  e.  A
)  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1514expdimp 437 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( y  e.  A  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1615com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( y  e.  A  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1716imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  (
y  e.  A  -> 
( x  <_  y  ->  z  <_  y )
) )
1817ralrimiv 2803 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  A. y  e.  A  ( x  <_  y  ->  z  <_  y ) )
19 ralim 2792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  A  (
x  <_  y  ->  z  <_  y )  -> 
( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
2018, 19syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
2120ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2221anasss 647 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  ( x  e.  RR  /\  A  C_  RR )
)  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2322expcom 435 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2423com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2524imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2625imdistand 692 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  (
z  e.  ZZ  /\  A. y  e.  A  z  <_  y ) ) )
27 breq1 4300 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <_  y  <->  z  <_  y ) )
2827ralbidv 2740 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  z  <_  y ) )
2928rspcev 3078 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  A. y  e.  A  z  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y )
3026, 29syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
3130ex 434 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3231com23 78 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3332ancomsd 454 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( A. y  e.  A  x  <_  y  /\  z  e.  ZZ )  ->  ( z  < 
x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3433expdimp 437 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) ) )
3534rexlimdv 2845 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3635anasss 647 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  A. y  e.  A  x  <_  y ) )  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3736expcom 435 . . . . . 6  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
384, 37mpdi 42 . . . . 5  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3938ex 434 . . . 4  |-  ( A 
C_  RR  ->  ( A. y  e.  A  x  <_  y  ->  ( x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
4039com23 78 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
411, 2, 40rexlimd 2843 . 2  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
42 zssre 10658 . . 3  |-  ZZ  C_  RR
43 ssrexv 3422 . . 3  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y ) )
4442, 43ax-mp 5 . 2  |-  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y
)
4541, 44impbid1 203 1  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1756   A.wral 2720   E.wrex 2721    C_ wss 3333   class class class wbr 4297   RRcr 9286    < clt 9423    <_ cle 9424   ZZcz 10651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-z 10652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator