MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Unicode version

Theorem lbsextlem4 16188
Description: Lemma for lbsext 16190. lbsextlem3 16187 satisfies the conditions for the application of Zorn's lemma zorn 8343 (thus invoking AC), and so there is a maximal linearly independent set extending  C. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.k  |-  ( ph  ->  ~P V  e.  dom  card )
Assertion
Ref Expression
lbsextlem4  |-  ( ph  ->  E. s  e.  J  C  C_  s )
Distinct variable groups:    x, J    ph, x, s    S, s, x    x, z, C   
x, N, z    x, V, z    x, W    z,
s    ph, s
Allowed substitution hints:    ph( z)    C( s)    S( z)    J( z, s)    N( s)    V( s)    W( z, s)

Proof of Theorem lbsextlem4
Dummy variables  u  w  y  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4  |-  ( ph  ->  ~P V  e.  dom  card )
2 lbsext.s . . . . 5  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
3 ssrab2 3388 . . . . 5  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
42, 3eqsstri 3338 . . . 4  |-  S  C_  ~P V
5 ssnum 7876 . . . 4  |-  ( ( ~P V  e.  dom  card  /\  S  C_  ~P V
)  ->  S  e.  dom  card )
61, 4, 5sylancl 644 . . 3  |-  ( ph  ->  S  e.  dom  card )
7 lbsext.v . . . 4  |-  V  =  ( Base `  W
)
8 lbsext.j . . . 4  |-  J  =  (LBasis `  W )
9 lbsext.n . . . 4  |-  N  =  ( LSpan `  W )
10 lbsext.w . . . 4  |-  ( ph  ->  W  e.  LVec )
11 lbsext.c . . . 4  |-  ( ph  ->  C  C_  V )
12 lbsext.x . . . 4  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
137, 8, 9, 10, 11, 12, 2lbsextlem1 16185 . . 3  |-  ( ph  ->  S  =/=  (/) )
1410adantr 452 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  W  e.  LVec )
1511adantr 452 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  C  C_  V )
1612adantr 452 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x }
) ) )
17 eqid 2404 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
18 simpr1 963 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  y  C_  S )
19 simpr2 964 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  y  =/=  (/) )
20 simpr3 965 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  -> [ C.]  Or  y )
21 eqid 2404 . . . . . 6  |-  U_ u  e.  y  ( N `  ( u  \  {
x } ) )  =  U_ u  e.  y  ( N `  ( u  \  { x } ) )
227, 8, 9, 14, 15, 16, 2, 17, 18, 19, 20, 21lbsextlem3 16187 . . . . 5  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  U. y  e.  S )
2322ex 424 . . . 4  |-  ( ph  ->  ( ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y )  ->  U. y  e.  S ) )
2423alrimiv 1638 . . 3  |-  ( ph  ->  A. y ( ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  S ) )
25 zornn0g 8341 . . 3  |-  ( ( S  e.  dom  card  /\  S  =/=  (/)  /\  A. y ( ( y 
C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  S ) )  ->  E. s  e.  S  A. t  e.  S  -.  s  C.  t )
266, 13, 24, 25syl3anc 1184 . 2  |-  ( ph  ->  E. s  e.  S  A. t  e.  S  -.  s  C.  t )
27 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  S )
28 sseq2 3330 . . . . . . . . . . 11  |-  ( z  =  s  ->  ( C  C_  z  <->  C  C_  s
) )
29 difeq1 3418 . . . . . . . . . . . . . . 15  |-  ( z  =  s  ->  (
z  \  { x } )  =  ( s  \  { x } ) )
3029fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( z  =  s  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( s  \  { x } ) ) )
3130eleq2d 2471 . . . . . . . . . . . . 13  |-  ( z  =  s  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( s  \  { x } ) ) ) )
3231notbid 286 . . . . . . . . . . . 12  |-  ( z  =  s  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
3332raleqbi1dv 2872 . . . . . . . . . . 11  |-  ( z  =  s  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
3428, 33anbi12d 692 . . . . . . . . . 10  |-  ( z  =  s  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
3534, 2elrab2 3054 . . . . . . . . 9  |-  ( s  e.  S  <->  ( s  e.  ~P V  /\  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) ) ) )
3627, 35sylib 189 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  ~P V  /\  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
3736simpld 446 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  ~P V
)
3837elpwid 3768 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  C_  V )
39 lveclmod 16133 . . . . . . . . . 10  |-  ( W  e.  LVec  ->  W  e. 
LMod )
4010, 39syl 16 . . . . . . . . 9  |-  ( ph  ->  W  e.  LMod )
4140adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  W  e.  LMod )
427, 9lspssv 16014 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  ( N `  s )  C_  V )
4341, 38, 42syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  s
)  C_  V )
44 ssun1 3470 . . . . . . . . . . . 12  |-  s  C_  ( s  u.  {
w } )
4544a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  ( s  u.  {
w } ) )
46 ssun2 3471 . . . . . . . . . . . . . 14  |-  { w }  C_  ( s  u. 
{ w } )
47 vex 2919 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
4847snid 3801 . . . . . . . . . . . . . 14  |-  w  e. 
{ w }
4946, 48sselii 3305 . . . . . . . . . . . . 13  |-  w  e.  ( s  u.  {
w } )
507, 9lspssid 16016 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  s  C_  ( N `  s
) )
5141, 38, 50syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  C_  ( N `  s ) )
5251adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  ( N `  s ) )
53 eldifn 3430 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( V  \ 
( N `  s
) )  ->  -.  w  e.  ( N `  s ) )
5453adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  ( N `  s
) )
5552, 54ssneldd 3311 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  s )
56 nelne1 2656 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( s  u.  { w }
)  /\  -.  w  e.  s )  ->  (
s  u.  { w } )  =/=  s
)
5749, 55, 56sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  =/=  s )
5857necomd 2650 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  =/=  ( s  u.  {
w } ) )
59 df-pss 3296 . . . . . . . . . . 11  |-  ( s 
C.  ( s  u. 
{ w } )  <-> 
( s  C_  (
s  u.  { w } )  /\  s  =/=  ( s  u.  {
w } ) ) )
6045, 58, 59sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C.  ( s  u.  {
w } ) )
6138adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  V )
62 eldifi 3429 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( V  \ 
( N `  s
) )  ->  w  e.  V )
6362adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  w  e.  V )
6463snssd 3903 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  { w }  C_  V )
6561, 64unssd 3483 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } ) 
C_  V )
66 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( Base `  W )  e.  _V
677, 66eqeltri 2474 . . . . . . . . . . . . . 14  |-  V  e. 
_V
6867elpw2 4324 . . . . . . . . . . . . 13  |-  ( ( s  u.  { w } )  e.  ~P V 
<->  ( s  u.  {
w } )  C_  V )
6965, 68sylibr 204 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  e.  ~P V )
7036simprd 450 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
7170simpld 446 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  C  C_  s )
7271adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  C  C_  s
)
7372, 44syl6ss 3320 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  C  C_  (
s  u.  { w } ) )
7410ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  W  e.  LVec )
7538adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  s  C_  V
)
7675ssdifssd 3445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( s  \  { x } ) 
C_  V )
7763adantrr 698 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  V
)
78 simprrr 742 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) ) )
79 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  s )
8055adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  w  e.  s )
81 nelne2 2657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  s  /\  -.  w  e.  s
)  ->  x  =/=  w )
8279, 80, 81syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  =/=  w
)
83 elsni 3798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  { w }  ->  x  =  w )
8483necon3ai 2607 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =/=  w  ->  -.  x  e.  { w } )
8582, 84syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  x  e.  { w } )
86 disjsn 3828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( { w }  i^i  { x } )  =  (/) 
<->  -.  x  e.  {
w } )
8785, 86sylibr 204 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( { w }  i^i  { x }
)  =  (/) )
88 disj3 3632 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( { w }  i^i  { x } )  =  (/) 
<->  { w }  =  ( { w }  \  { x } ) )
8987, 88sylib 189 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  { w }  =  ( { w }  \  { x }
) )
9089uneq2d 3461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s 
\  { x }
)  u.  { w } )  =  ( ( s  \  {
x } )  u.  ( { w }  \  { x } ) ) )
91 difundir 3554 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  u.  { w } )  \  {
x } )  =  ( ( s  \  { x } )  u.  ( { w }  \  { x }
) )
9290, 91syl6reqr 2455 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s  u.  { w }
)  \  { x } )  =  ( ( s  \  {
x } )  u. 
{ w } ) )
9392fveq2d 5691 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) )  =  ( N `  ( ( s  \  { x } )  u.  {
w } ) ) )
9478, 93eleqtrd 2480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( N `  ( ( s  \  { x } )  u.  {
w } ) ) )
9570simprd 450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) )
9695adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
97 rsp 2726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) )  ->  ( x  e.  s  ->  -.  x  e.  ( N `  (
s  \  { x } ) ) ) )
9896, 79, 97sylc 58 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
9994, 98eldifd 3291 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( ( N `  (
( s  \  {
x } )  u. 
{ w } ) )  \  ( N `
 ( s  \  { x } ) ) ) )
1007, 17, 9lspsolv 16170 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  LVec  /\  (
( s  \  {
x } )  C_  V  /\  w  e.  V  /\  x  e.  (
( N `  (
( s  \  {
x } )  u. 
{ w } ) )  \  ( N `
 ( s  \  { x } ) ) ) ) )  ->  w  e.  ( N `  ( ( s  \  { x } )  u.  {
x } ) ) )
10174, 76, 77, 99, 100syl13anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  ( N `  ( ( s  \  { x } )  u.  {
x } ) ) )
102 undif1 3663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( s  \  { x } )  u.  {
x } )  =  ( s  u.  {
x } )
10379snssd 3903 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  { x }  C_  s )
104 ssequn2 3480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { x }  C_  s  <->  ( s  u.  { x } )  =  s )
105103, 104sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( s  u. 
{ x } )  =  s )
106102, 105syl5eq 2448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s 
\  { x }
)  u.  { x } )  =  s )
107106fveq2d 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( N `  ( ( s  \  { x } )  u.  { x }
) )  =  ( N `  s ) )
108101, 107eleqtrd 2480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  ( N `  s ) )
109108expr 599 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( (
x  e.  s  /\  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )  ->  w  e.  ( N `  s ) ) )
11054, 109mtod 170 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  (
x  e.  s  /\  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) ) )
111 imnan 412 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  s  ->  -.  x  e.  ( N `  ( (
s  u.  { w } )  \  {
x } ) ) )  <->  -.  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
112110, 111sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( x  e.  s  ->  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
113112ralrimiv 2748 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  s  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) )
114 difssd 3435 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  \  {
w } )  C_  s )
1157, 9lspss 16015 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  s  C_  V  /\  ( s 
\  { w }
)  C_  s )  ->  ( N `  (
s  \  { w } ) )  C_  ( N `  s ) )
11641, 38, 114, 115syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  (
s  \  { w } ) )  C_  ( N `  s ) )
117116adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( N `  ( s  \  {
w } ) ) 
C_  ( N `  s ) )
118117, 54ssneldd 3311 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  ( N `  (
s  \  { w } ) ) )
119 id 20 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  x  =  w )
120 sneq 3785 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  { x }  =  { w } )
121120difeq2d 3425 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
( s  u.  {
w } )  \  { x } )  =  ( ( s  u.  { w }
)  \  { w } ) )
122 difun2 3667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  u.  { w } )  \  {
w } )  =  ( s  \  {
w } )
123121, 122syl6eq 2452 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
( s  u.  {
w } )  \  { x } )  =  ( s  \  { w } ) )
124123fveq2d 5691 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( N `  ( (
s  u.  { w } )  \  {
x } ) )  =  ( N `  ( s  \  {
w } ) ) )
125119, 124eleq12d 2472 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  (
x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) )  <->  w  e.  ( N `  ( s 
\  { w }
) ) ) )
126125notbid 286 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  ( -.  x  e.  ( N `  ( (
s  u.  { w } )  \  {
x } ) )  <->  -.  w  e.  ( N `  ( s  \  { w } ) ) ) )
12747, 126ralsn 3809 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  { w }  -.  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) )  <->  -.  w  e.  ( N `  ( s  \  { w } ) ) )
128118, 127sylibr 204 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  { w }  -.  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )
129 ralun 3489 . . . . . . . . . . . . . 14  |-  ( ( A. x  e.  s  -.  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) )  /\  A. x  e. 
{ w }  -.  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )  ->  A. x  e.  (
s  u.  { w } )  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) )
130113, 128, 129syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) )
13173, 130jca 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( C  C_  ( s  u.  {
w } )  /\  A. x  e.  ( s  u.  { w }
)  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
132 sseq2 3330 . . . . . . . . . . . . . 14  |-  ( z  =  ( s  u. 
{ w } )  ->  ( C  C_  z 
<->  C  C_  ( s  u.  { w } ) ) )
133 difeq1 3418 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( s  u. 
{ w } )  ->  ( z  \  { x } )  =  ( ( s  u.  { w }
)  \  { x } ) )
134133fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( s  u. 
{ w } )  ->  ( N `  ( z  \  {
x } ) )  =  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )
135134eleq2d 2471 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( s  u. 
{ w } )  ->  ( x  e.  ( N `  (
z  \  { x } ) )  <->  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) ) ) )
136135notbid 286 . . . . . . . . . . . . . . 15  |-  ( z  =  ( s  u. 
{ w } )  ->  ( -.  x  e.  ( N `  (
z  \  { x } ) )  <->  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
137136raleqbi1dv 2872 . . . . . . . . . . . . . 14  |-  ( z  =  ( s  u. 
{ w } )  ->  ( A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) )  <->  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) ) )
138132, 137anbi12d 692 . . . . . . . . . . . . 13  |-  ( z  =  ( s  u. 
{ w } )  ->  ( ( C 
C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z  \  {
x } ) ) )  <->  ( C  C_  ( s  u.  {
w } )  /\  A. x  e.  ( s  u.  { w }
)  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )
139138, 2elrab2 3054 . . . . . . . . . . . 12  |-  ( ( s  u.  { w } )  e.  S  <->  ( ( s  u.  {
w } )  e. 
~P V  /\  ( C  C_  ( s  u. 
{ w } )  /\  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) ) ) )
14069, 131, 139sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  e.  S )
141 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. t  e.  S  -.  s  C.  t )
142 psseq2 3395 . . . . . . . . . . . . 13  |-  ( t  =  ( s  u. 
{ w } )  ->  ( s  C.  t 
<->  s  C.  ( s  u.  { w }
) ) )
143142notbid 286 . . . . . . . . . . . 12  |-  ( t  =  ( s  u. 
{ w } )  ->  ( -.  s  C.  t  <->  -.  s  C.  ( s  u.  {
w } ) ) )
144143rspcv 3008 . . . . . . . . . . 11  |-  ( ( s  u.  { w } )  e.  S  ->  ( A. t  e.  S  -.  s  C.  t  ->  -.  s  C.  ( s  u.  {
w } ) ) )
145140, 141, 144sylc 58 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  s  C.  ( s  u.  {
w } ) )
14660, 145pm2.65da 560 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  -.  w  e.  ( V  \  ( N `  s ) ) )
147146eq0rdv 3622 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( V  \  ( N `  s )
)  =  (/) )
148 ssdif0 3646 . . . . . . . 8  |-  ( V 
C_  ( N `  s )  <->  ( V  \  ( N `  s
) )  =  (/) )
149147, 148sylibr 204 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  V  C_  ( N `  s ) )
15043, 149eqssd 3325 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  s
)  =  V )
15110adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  W  e.  LVec )
1527, 8, 9islbs2 16181 . . . . . . 7  |-  ( W  e.  LVec  ->  ( s  e.  J  <->  ( s  C_  V  /\  ( N `
 s )  =  V  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
153151, 152syl 16 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  J  <->  ( s  C_  V  /\  ( N `  s )  =  V  /\  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) ) ) )
15438, 150, 95, 153mpbir3and 1137 . . . . 5  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  J )
155154, 71jca 519 . . . 4  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  J  /\  C  C_  s ) )
156155ex 424 . . 3  |-  ( ph  ->  ( ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t )  ->  (
s  e.  J  /\  C  C_  s ) ) )
157156reximdv2 2775 . 2  |-  ( ph  ->  ( E. s  e.  S  A. t  e.  S  -.  s  C.  t  ->  E. s  e.  J  C  C_  s ) )
15826, 157mpd 15 1  |-  ( ph  ->  E. s  e.  J  C  C_  s )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280    C. wpss 3281   (/)c0 3588   ~Pcpw 3759   {csn 3774   U.cuni 3975   U_ciun 4053    Or wor 4462   dom cdm 4837   ` cfv 5413   [ C.] crpss 6480   cardccrd 7778   Basecbs 13424   LModclmod 15905   LSubSpclss 15963   LSpanclspn 16002  LBasisclbs 16101   LVecclvec 16129
This theorem is referenced by:  lbsextg  16189
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-rpss 6481  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-sbg 14769  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lbs 16102  df-lvec 16130
  Copyright terms: Public domain W3C validator