MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Structured version   Unicode version

Theorem lbsextlem4 17602
Description: Lemma for lbsext 17604. lbsextlem3 17601 satisfies the conditions for the application of Zorn's lemma zorn 8886 (thus invoking AC), and so there is a maximal linearly independent set extending  C. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.k  |-  ( ph  ->  ~P V  e.  dom  card )
Assertion
Ref Expression
lbsextlem4  |-  ( ph  ->  E. s  e.  J  C  C_  s )
Distinct variable groups:    x, J    ph, x, s    S, s, x    x, z, C   
x, N, z    x, V, z    x, W    z,
s    ph, s
Allowed substitution hints:    ph( z)    C( s)    S( z)    J( z, s)    N( s)    V( s)    W( z, s)

Proof of Theorem lbsextlem4
Dummy variables  u  w  y  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4  |-  ( ph  ->  ~P V  e.  dom  card )
2 lbsext.s . . . . 5  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
3 ssrab2 3585 . . . . 5  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
42, 3eqsstri 3534 . . . 4  |-  S  C_  ~P V
5 ssnum 8419 . . . 4  |-  ( ( ~P V  e.  dom  card  /\  S  C_  ~P V
)  ->  S  e.  dom  card )
61, 4, 5sylancl 662 . . 3  |-  ( ph  ->  S  e.  dom  card )
7 lbsext.v . . . 4  |-  V  =  ( Base `  W
)
8 lbsext.j . . . 4  |-  J  =  (LBasis `  W )
9 lbsext.n . . . 4  |-  N  =  ( LSpan `  W )
10 lbsext.w . . . 4  |-  ( ph  ->  W  e.  LVec )
11 lbsext.c . . . 4  |-  ( ph  ->  C  C_  V )
12 lbsext.x . . . 4  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
137, 8, 9, 10, 11, 12, 2lbsextlem1 17599 . . 3  |-  ( ph  ->  S  =/=  (/) )
1410adantr 465 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  W  e.  LVec )
1511adantr 465 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  C  C_  V )
1612adantr 465 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x }
) ) )
17 eqid 2467 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
18 simpr1 1002 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  y  C_  S )
19 simpr2 1003 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  y  =/=  (/) )
20 simpr3 1004 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  -> [ C.]  Or  y )
21 eqid 2467 . . . . . 6  |-  U_ u  e.  y  ( N `  ( u  \  {
x } ) )  =  U_ u  e.  y  ( N `  ( u  \  { x } ) )
227, 8, 9, 14, 15, 16, 2, 17, 18, 19, 20, 21lbsextlem3 17601 . . . . 5  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  U. y  e.  S )
2322ex 434 . . . 4  |-  ( ph  ->  ( ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y )  ->  U. y  e.  S ) )
2423alrimiv 1695 . . 3  |-  ( ph  ->  A. y ( ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  S ) )
25 zornn0g 8884 . . 3  |-  ( ( S  e.  dom  card  /\  S  =/=  (/)  /\  A. y ( ( y 
C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  S ) )  ->  E. s  e.  S  A. t  e.  S  -.  s  C.  t )
266, 13, 24, 25syl3anc 1228 . 2  |-  ( ph  ->  E. s  e.  S  A. t  e.  S  -.  s  C.  t )
27 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  S )
28 sseq2 3526 . . . . . . . . . . 11  |-  ( z  =  s  ->  ( C  C_  z  <->  C  C_  s
) )
29 difeq1 3615 . . . . . . . . . . . . . . 15  |-  ( z  =  s  ->  (
z  \  { x } )  =  ( s  \  { x } ) )
3029fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( z  =  s  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( s  \  { x } ) ) )
3130eleq2d 2537 . . . . . . . . . . . . 13  |-  ( z  =  s  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( s  \  { x } ) ) ) )
3231notbid 294 . . . . . . . . . . . 12  |-  ( z  =  s  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
3332raleqbi1dv 3066 . . . . . . . . . . 11  |-  ( z  =  s  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
3428, 33anbi12d 710 . . . . . . . . . 10  |-  ( z  =  s  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
3534, 2elrab2 3263 . . . . . . . . 9  |-  ( s  e.  S  <->  ( s  e.  ~P V  /\  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) ) ) )
3627, 35sylib 196 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  ~P V  /\  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
3736simpld 459 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  ~P V
)
3837elpwid 4020 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  C_  V )
39 lveclmod 17547 . . . . . . . . . 10  |-  ( W  e.  LVec  ->  W  e. 
LMod )
4010, 39syl 16 . . . . . . . . 9  |-  ( ph  ->  W  e.  LMod )
4140adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  W  e.  LMod )
427, 9lspssv 17424 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  ( N `  s )  C_  V )
4341, 38, 42syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  s
)  C_  V )
44 ssun1 3667 . . . . . . . . . . . 12  |-  s  C_  ( s  u.  {
w } )
4544a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  ( s  u.  {
w } ) )
46 ssun2 3668 . . . . . . . . . . . . . 14  |-  { w }  C_  ( s  u. 
{ w } )
47 ssnid 4056 . . . . . . . . . . . . . 14  |-  w  e. 
{ w }
4846, 47sselii 3501 . . . . . . . . . . . . 13  |-  w  e.  ( s  u.  {
w } )
497, 9lspssid 17426 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  s  C_  ( N `  s
) )
5041, 38, 49syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  C_  ( N `  s ) )
5150adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  ( N `  s ) )
52 eldifn 3627 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( V  \ 
( N `  s
) )  ->  -.  w  e.  ( N `  s ) )
5352adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  ( N `  s
) )
5451, 53ssneldd 3507 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  s )
55 nelne1 2796 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( s  u.  { w }
)  /\  -.  w  e.  s )  ->  (
s  u.  { w } )  =/=  s
)
5648, 54, 55sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  =/=  s )
5756necomd 2738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  =/=  ( s  u.  {
w } ) )
58 df-pss 3492 . . . . . . . . . . 11  |-  ( s 
C.  ( s  u. 
{ w } )  <-> 
( s  C_  (
s  u.  { w } )  /\  s  =/=  ( s  u.  {
w } ) ) )
5945, 57, 58sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C.  (
s  u.  { w } ) )
6038adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  V )
61 eldifi 3626 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( V  \ 
( N `  s
) )  ->  w  e.  V )
6261adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  w  e.  V )
6362snssd 4172 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  { w }  C_  V )
6460, 63unssd 3680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } ) 
C_  V )
65 fvex 5875 . . . . . . . . . . . . . . 15  |-  ( Base `  W )  e.  _V
667, 65eqeltri 2551 . . . . . . . . . . . . . 14  |-  V  e. 
_V
6766elpw2 4611 . . . . . . . . . . . . 13  |-  ( ( s  u.  { w } )  e.  ~P V 
<->  ( s  u.  {
w } )  C_  V )
6864, 67sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  e.  ~P V )
6936simprd 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
7069simpld 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  C  C_  s )
7170adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  C  C_  s
)
7271, 44syl6ss 3516 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  C  C_  (
s  u.  { w } ) )
7310ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  W  e.  LVec )
7438adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  s  C_  V
)
7574ssdifssd 3642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( s  \  { x } ) 
C_  V )
7662adantrr 716 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  V
)
77 simprrr 764 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) ) )
78 simprrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  s )
7954adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  w  e.  s )
80 nelne2 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  s  /\  -.  w  e.  s
)  ->  x  =/=  w )
8178, 79, 80syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  =/=  w
)
82 elsni 4052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  { w }  ->  x  =  w )
8382necon3ai 2695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =/=  w  ->  -.  x  e.  { w } )
8481, 83syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  x  e.  { w } )
85 disjsn 4088 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( { w }  i^i  { x } )  =  (/) 
<->  -.  x  e.  {
w } )
8684, 85sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( { w }  i^i  { x }
)  =  (/) )
87 disj3 3871 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( { w }  i^i  { x } )  =  (/) 
<->  { w }  =  ( { w }  \  { x } ) )
8886, 87sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  { w }  =  ( { w }  \  { x }
) )
8988uneq2d 3658 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s 
\  { x }
)  u.  { w } )  =  ( ( s  \  {
x } )  u.  ( { w }  \  { x } ) ) )
90 difundir 3751 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  u.  { w } )  \  {
x } )  =  ( ( s  \  { x } )  u.  ( { w }  \  { x }
) )
9189, 90syl6reqr 2527 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s  u.  { w }
)  \  { x } )  =  ( ( s  \  {
x } )  u. 
{ w } ) )
9291fveq2d 5869 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) )  =  ( N `  ( ( s  \  { x } )  u.  {
w } ) ) )
9377, 92eleqtrd 2557 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( N `  ( ( s  \  { x } )  u.  {
w } ) ) )
9469simprd 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) )
9594adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
96 rsp 2830 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) )  ->  ( x  e.  s  ->  -.  x  e.  ( N `  (
s  \  { x } ) ) ) )
9795, 78, 96sylc 60 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
9893, 97eldifd 3487 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( ( N `  (
( s  \  {
x } )  u. 
{ w } ) )  \  ( N `
 ( s  \  { x } ) ) ) )
997, 17, 9lspsolv 17584 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  LVec  /\  (
( s  \  {
x } )  C_  V  /\  w  e.  V  /\  x  e.  (
( N `  (
( s  \  {
x } )  u. 
{ w } ) )  \  ( N `
 ( s  \  { x } ) ) ) ) )  ->  w  e.  ( N `  ( ( s  \  { x } )  u.  {
x } ) ) )
10073, 75, 76, 98, 99syl13anc 1230 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  ( N `  ( ( s  \  { x } )  u.  {
x } ) ) )
101 undif1 3902 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( s  \  { x } )  u.  {
x } )  =  ( s  u.  {
x } )
10278snssd 4172 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  { x }  C_  s )
103 ssequn2 3677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { x }  C_  s  <->  ( s  u.  { x } )  =  s )
104102, 103sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( s  u. 
{ x } )  =  s )
105101, 104syl5eq 2520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s 
\  { x }
)  u.  { x } )  =  s )
106105fveq2d 5869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( N `  ( ( s  \  { x } )  u.  { x }
) )  =  ( N `  s ) )
107100, 106eleqtrd 2557 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  ( N `  s ) )
108107expr 615 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( (
x  e.  s  /\  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )  ->  w  e.  ( N `  s ) ) )
10953, 108mtod 177 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  (
x  e.  s  /\  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) ) )
110 imnan 422 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  s  ->  -.  x  e.  ( N `  ( (
s  u.  { w } )  \  {
x } ) ) )  <->  -.  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
111109, 110sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( x  e.  s  ->  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
112111ralrimiv 2876 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  s  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) )
113 difssd 3632 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  \  {
w } )  C_  s )
1147, 9lspss 17425 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  s  C_  V  /\  ( s 
\  { w }
)  C_  s )  ->  ( N `  (
s  \  { w } ) )  C_  ( N `  s ) )
11541, 38, 113, 114syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  (
s  \  { w } ) )  C_  ( N `  s ) )
116115adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( N `  ( s  \  {
w } ) ) 
C_  ( N `  s ) )
117116, 53ssneldd 3507 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  ( N `  (
s  \  { w } ) ) )
118 vex 3116 . . . . . . . . . . . . . . . 16  |-  w  e. 
_V
119 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  x  =  w )
120 sneq 4037 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  { x }  =  { w } )
121120difeq2d 3622 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
( s  u.  {
w } )  \  { x } )  =  ( ( s  u.  { w }
)  \  { w } ) )
122 difun2 3906 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  u.  { w } )  \  {
w } )  =  ( s  \  {
w } )
123121, 122syl6eq 2524 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
( s  u.  {
w } )  \  { x } )  =  ( s  \  { w } ) )
124123fveq2d 5869 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( N `  ( (
s  u.  { w } )  \  {
x } ) )  =  ( N `  ( s  \  {
w } ) ) )
125119, 124eleq12d 2549 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  (
x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) )  <->  w  e.  ( N `  ( s 
\  { w }
) ) ) )
126125notbid 294 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  ( -.  x  e.  ( N `  ( (
s  u.  { w } )  \  {
x } ) )  <->  -.  w  e.  ( N `  ( s  \  { w } ) ) ) )
127118, 126ralsn 4066 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  { w }  -.  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) )  <->  -.  w  e.  ( N `  ( s  \  { w } ) ) )
128117, 127sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  { w }  -.  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )
129 ralun 3686 . . . . . . . . . . . . . 14  |-  ( ( A. x  e.  s  -.  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) )  /\  A. x  e. 
{ w }  -.  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )  ->  A. x  e.  (
s  u.  { w } )  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) )
130112, 128, 129syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) )
13172, 130jca 532 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( C  C_  ( s  u.  {
w } )  /\  A. x  e.  ( s  u.  { w }
)  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
132 sseq2 3526 . . . . . . . . . . . . . 14  |-  ( z  =  ( s  u. 
{ w } )  ->  ( C  C_  z 
<->  C  C_  ( s  u.  { w } ) ) )
133 difeq1 3615 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( s  u. 
{ w } )  ->  ( z  \  { x } )  =  ( ( s  u.  { w }
)  \  { x } ) )
134133fveq2d 5869 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( s  u. 
{ w } )  ->  ( N `  ( z  \  {
x } ) )  =  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )
135134eleq2d 2537 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( s  u. 
{ w } )  ->  ( x  e.  ( N `  (
z  \  { x } ) )  <->  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) ) ) )
136135notbid 294 . . . . . . . . . . . . . . 15  |-  ( z  =  ( s  u. 
{ w } )  ->  ( -.  x  e.  ( N `  (
z  \  { x } ) )  <->  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
137136raleqbi1dv 3066 . . . . . . . . . . . . . 14  |-  ( z  =  ( s  u. 
{ w } )  ->  ( A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) )  <->  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) ) )
138132, 137anbi12d 710 . . . . . . . . . . . . 13  |-  ( z  =  ( s  u. 
{ w } )  ->  ( ( C 
C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z  \  {
x } ) ) )  <->  ( C  C_  ( s  u.  {
w } )  /\  A. x  e.  ( s  u.  { w }
)  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )
139138, 2elrab2 3263 . . . . . . . . . . . 12  |-  ( ( s  u.  { w } )  e.  S  <->  ( ( s  u.  {
w } )  e. 
~P V  /\  ( C  C_  ( s  u. 
{ w } )  /\  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) ) ) )
14068, 131, 139sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  e.  S )
141 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. t  e.  S  -.  s  C.  t )
142 psseq2 3592 . . . . . . . . . . . . 13  |-  ( t  =  ( s  u. 
{ w } )  ->  ( s  C.  t 
<->  s  C.  ( s  u.  { w } ) ) )
143142notbid 294 . . . . . . . . . . . 12  |-  ( t  =  ( s  u. 
{ w } )  ->  ( -.  s  C.  t  <->  -.  s  C.  (
s  u.  { w } ) ) )
144143rspcv 3210 . . . . . . . . . . 11  |-  ( ( s  u.  { w } )  e.  S  ->  ( A. t  e.  S  -.  s  C.  t  ->  -.  s  C.  (
s  u.  { w } ) ) )
145140, 141, 144sylc 60 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  s  C.  ( s  u.  {
w } ) )
14659, 145pm2.65da 576 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  -.  w  e.  ( V  \  ( N `  s ) ) )
147146eq0rdv 3820 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( V  \  ( N `  s )
)  =  (/) )
148 ssdif0 3885 . . . . . . . 8  |-  ( V 
C_  ( N `  s )  <->  ( V  \  ( N `  s
) )  =  (/) )
149147, 148sylibr 212 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  V  C_  ( N `  s ) )
15043, 149eqssd 3521 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  s
)  =  V )
15110adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  W  e.  LVec )
1527, 8, 9islbs2 17595 . . . . . . 7  |-  ( W  e.  LVec  ->  ( s  e.  J  <->  ( s  C_  V  /\  ( N `
 s )  =  V  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
153151, 152syl 16 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  J  <->  ( s  C_  V  /\  ( N `  s )  =  V  /\  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) ) ) )
15438, 150, 94, 153mpbir3and 1179 . . . . 5  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  J )
155154, 70jca 532 . . . 4  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  J  /\  C  C_  s ) )
156155ex 434 . . 3  |-  ( ph  ->  ( ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t )  ->  (
s  e.  J  /\  C  C_  s ) ) )
157156reximdv2 2934 . 2  |-  ( ph  ->  ( E. s  e.  S  A. t  e.  S  -.  s  C.  t  ->  E. s  e.  J  C  C_  s ) )
15826, 157mpd 15 1  |-  ( ph  ->  E. s  e.  J  C  C_  s )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476    C. wpss 3477   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   U_ciun 4325    Or wor 4799   dom cdm 4999   ` cfv 5587   [ C.] crpss 6562   cardccrd 8315   Basecbs 14489   LModclmod 17307   LSubSpclss 17373   LSpanclspn 17412  LBasisclbs 17515   LVecclvec 17543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-rpss 6563  df-om 6680  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-2 10593  df-3 10594  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-0g 14696  df-mnd 15731  df-grp 15864  df-minusg 15865  df-sbg 15866  df-cmn 16603  df-abl 16604  df-mgp 16941  df-ur 16953  df-rng 16997  df-oppr 17068  df-dvdsr 17086  df-unit 17087  df-invr 17117  df-drng 17193  df-lmod 17309  df-lss 17374  df-lsp 17413  df-lbs 17516  df-lvec 17544
This theorem is referenced by:  lbsextg  17603
  Copyright terms: Public domain W3C validator