MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Unicode version

Theorem lbsextlem3 17586
Description: Lemma for lbsext 17589. A chain in  S has an upper bound in  S. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.p  |-  P  =  ( LSubSp `  W )
lbsext.a  |-  ( ph  ->  A  C_  S )
lbsext.z  |-  ( ph  ->  A  =/=  (/) )
lbsext.r  |-  ( ph  -> [ C.]  Or  A )
lbsext.t  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
Assertion
Ref Expression
lbsextlem3  |-  ( ph  ->  U. A  e.  S
)
Distinct variable groups:    x, J    x, u, ph    u, S, x   
x, z, C    z, u, N, x    u, V, x, z    u, W, x    u, A, x, z
Allowed substitution hints:    ph( z)    C( u)    P( x, z, u)    S( z)    T( x, z, u)    J( z, u)    W( z)

Proof of Theorem lbsextlem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5  |-  ( ph  ->  A  C_  S )
2 lbsext.s . . . . . 6  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
3 ssrab2 3585 . . . . . 6  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
42, 3eqsstri 3534 . . . . 5  |-  S  C_  ~P V
51, 4syl6ss 3516 . . . 4  |-  ( ph  ->  A  C_  ~P V
)
6 sspwuni 4411 . . . 4  |-  ( A 
C_  ~P V  <->  U. A  C_  V )
75, 6sylib 196 . . 3  |-  ( ph  ->  U. A  C_  V
)
8 lbsext.v . . . . 5  |-  V  =  ( Base `  W
)
9 fvex 5874 . . . . 5  |-  ( Base `  W )  e.  _V
108, 9eqeltri 2551 . . . 4  |-  V  e. 
_V
1110elpw2 4611 . . 3  |-  ( U. A  e.  ~P V  <->  U. A  C_  V )
127, 11sylibr 212 . 2  |-  ( ph  ->  U. A  e.  ~P V )
13 ssintub 4300 . . . . 5  |-  C  C_  |^|
{ z  e.  ~P V  |  C  C_  z }
14 simpl 457 . . . . . . . . . 10  |-  ( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `
 ( z  \  { x } ) ) )  ->  C  C_  z )
1514a1i 11 . . . . . . . . 9  |-  ( z  e.  ~P V  -> 
( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) )  ->  C  C_  z
) )
1615ss2rabi 3582 . . . . . . . 8  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  { z  e. 
~P V  |  C  C_  z }
172, 16eqsstri 3534 . . . . . . 7  |-  S  C_  { z  e.  ~P V  |  C  C_  z }
181, 17syl6ss 3516 . . . . . 6  |-  ( ph  ->  A  C_  { z  e.  ~P V  |  C  C_  z } )
19 intss 4303 . . . . . 6  |-  ( A 
C_  { z  e. 
~P V  |  C  C_  z }  ->  |^| { z  e.  ~P V  |  C  C_  z }  C_  |^| A )
2018, 19syl 16 . . . . 5  |-  ( ph  ->  |^| { z  e. 
~P V  |  C  C_  z }  C_  |^| A
)
2113, 20syl5ss 3515 . . . 4  |-  ( ph  ->  C  C_  |^| A )
22 lbsext.z . . . . 5  |-  ( ph  ->  A  =/=  (/) )
23 intssuni 4304 . . . . 5  |-  ( A  =/=  (/)  ->  |^| A  C_  U. A )
2422, 23syl 16 . . . 4  |-  ( ph  ->  |^| A  C_  U. A
)
2521, 24sstrd 3514 . . 3  |-  ( ph  ->  C  C_  U. A )
26 eluni2 4249 . . . . 5  |-  ( x  e.  U. A  <->  E. y  e.  A  x  e.  y )
27 simpll1 1035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  ph )
28 lbsext.w . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LVec )
29 lveclmod 17532 . . . . . . . . . . . . 13  |-  ( W  e.  LVec  ->  W  e. 
LMod )
3028, 29syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LMod )
3127, 30syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  W  e.  LMod )
3227, 1syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  A  C_  S )
33 lbsext.r . . . . . . . . . . . . . . . . 17  |-  ( ph  -> [ C.]  Or  A )
3427, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> [ C.]  Or  A )
35 simpll2 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
y  e.  A )
36 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  u  e.  A )
37 sorpssun 6569 . . . . . . . . . . . . . . . 16  |-  ( ( [
C.]  Or  A  /\  ( y  e.  A  /\  u  e.  A
) )  ->  (
y  u.  u )  e.  A )
3834, 35, 36, 37syl12anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  A )
3932, 38sseldd 3505 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  S )
404, 39sseldi 3502 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  ~P V
)
4140elpwid 4020 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  C_  V )
4241ssdifssd 3642 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( ( y  u.  u )  \  {
x } )  C_  V )
43 ssun2 3668 . . . . . . . . . . . 12  |-  u  C_  ( y  u.  u
)
44 ssdif 3639 . . . . . . . . . . . 12  |-  ( u 
C_  ( y  u.  u )  ->  (
u  \  { x } )  C_  (
( y  u.  u
)  \  { x } ) )
4543, 44mp1i 12 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( u  \  {
x } )  C_  ( ( y  u.  u )  \  {
x } ) )
46 lbsext.n . . . . . . . . . . . 12  |-  N  =  ( LSpan `  W )
478, 46lspss 17410 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  (
( y  u.  u
)  \  { x } )  C_  V  /\  ( u  \  {
x } )  C_  ( ( y  u.  u )  \  {
x } ) )  ->  ( N `  ( u  \  { x } ) )  C_  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
4831, 42, 45, 47syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( N `  (
u  \  { x } ) )  C_  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
49 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( N `  ( u  \  {
x } ) ) )
5048, 49sseldd 3505 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( N `  ( ( y  u.  u )  \  {
x } ) ) )
51 sseq2 3526 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  u )  ->  ( C  C_  z  <->  C  C_  (
y  u.  u ) ) )
52 difeq1 3615 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y  u.  u )  ->  (
z  \  { x } )  =  ( ( y  u.  u
)  \  { x } ) )
5352fveq2d 5868 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  u.  u )  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( ( y  u.  u )  \  { x } ) ) )
5453eleq2d 2537 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  u.  u )  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( (
y  u.  u ) 
\  { x }
) ) ) )
5554notbid 294 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  u )  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
5655raleqbi1dv 3066 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  u )  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
5751, 56anbi12d 710 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  u )  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  ( y  u.  u
)  /\  A. x  e.  ( y  u.  u
)  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) ) ) )
5857, 2elrab2 3263 . . . . . . . . . . . . 13  |-  ( ( y  u.  u )  e.  S  <->  ( (
y  u.  u )  e.  ~P V  /\  ( C  C_  ( y  u.  u )  /\  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `
 ( ( y  u.  u )  \  { x } ) ) ) ) )
5958simprbi 464 . . . . . . . . . . . 12  |-  ( ( y  u.  u )  e.  S  ->  ( C  C_  ( y  u.  u )  /\  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) ) )
6059simprd 463 . . . . . . . . . . 11  |-  ( ( y  u.  u )  e.  S  ->  A. x  e.  ( y  u.  u
)  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) )
6139, 60syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  A. x  e.  (
y  u.  u )  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
62 simpll3 1037 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  y )
63 elun1 3671 . . . . . . . . . . 11  |-  ( x  e.  y  ->  x  e.  ( y  u.  u
) )
6462, 63syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( y  u.  u ) )
65 rsp 2830 . . . . . . . . . 10  |-  ( A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) )  -> 
( x  e.  ( y  u.  u )  ->  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
6661, 64, 65sylc 60 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  -.  x  e.  ( N `  ( (
y  u.  u ) 
\  { x }
) ) )
6750, 66pm2.65da 576 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A )  ->  -.  x  e.  ( N `  ( u  \  {
x } ) ) )
6867nrexdv 2920 . . . . . . 7  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  -.  E. u  e.  A  x  e.  ( N `  ( u 
\  { x }
) ) )
69 lbsext.j . . . . . . . . . . . . . . . 16  |-  J  =  (LBasis `  W )
70 lbsext.c . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  C_  V )
71 lbsext.x . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
72 lbsext.p . . . . . . . . . . . . . . . 16  |-  P  =  ( LSubSp `  W )
73 lbsext.t . . . . . . . . . . . . . . . 16  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
748, 69, 46, 28, 70, 71, 2, 72, 1, 22, 33, 73lbsextlem2 17585 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  e.  P  /\  ( U. A  \  { x } ) 
C_  T ) )
7574simpld 459 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  P )
768, 72lssss 17363 . . . . . . . . . . . . . 14  |-  ( T  e.  P  ->  T  C_  V )
7775, 76syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  T  C_  V )
7874simprd 463 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U. A  \  { x } ) 
C_  T )
798, 46lspss 17410 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  ( U. A  \  { x }
)  C_  T )  ->  ( N `  ( U. A  \  { x } ) )  C_  ( N `  T ) )
8030, 77, 78, 79syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  ( U. A  \  { x } ) )  C_  ( N `  T ) )
8172, 46lspid 17408 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  T  e.  P )  ->  ( N `  T )  =  T )
8230, 75, 81syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  T
)  =  T )
8380, 82sseqtrd 3540 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  ( U. A  \  { x } ) )  C_  T )
84833ad2ant1 1017 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( N `  ( U. A  \  { x } ) )  C_  T )
8584, 73syl6sseq 3550 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( N `  ( U. A  \  { x } ) )  C_  U_ u  e.  A  ( N `  ( u  \  { x } ) ) )
8685sseld 3503 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( x  e.  ( N `  ( U. A  \  { x } ) )  ->  x  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) ) ) )
87 eliun 4330 . . . . . . . 8  |-  ( x  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) )  <->  E. u  e.  A  x  e.  ( N `  ( u 
\  { x }
) ) )
8886, 87syl6ib 226 . . . . . . 7  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( x  e.  ( N `  ( U. A  \  { x } ) )  ->  E. u  e.  A  x  e.  ( N `  ( u  \  {
x } ) ) ) )
8968, 88mtod 177 . . . . . 6  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  -.  x  e.  ( N `  ( U. A  \  { x } ) ) )
9089rexlimdv3a 2957 . . . . 5  |-  ( ph  ->  ( E. y  e.  A  x  e.  y  ->  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9126, 90syl5bi 217 . . . 4  |-  ( ph  ->  ( x  e.  U. A  ->  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9291ralrimiv 2876 . . 3  |-  ( ph  ->  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) )
9325, 92jca 532 . 2  |-  ( ph  ->  ( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
94 sseq2 3526 . . . 4  |-  ( z  =  U. A  -> 
( C  C_  z  <->  C 
C_  U. A ) )
95 difeq1 3615 . . . . . . . 8  |-  ( z  =  U. A  -> 
( z  \  {
x } )  =  ( U. A  \  { x } ) )
9695fveq2d 5868 . . . . . . 7  |-  ( z  =  U. A  -> 
( N `  (
z  \  { x } ) )  =  ( N `  ( U. A  \  { x } ) ) )
9796eleq2d 2537 . . . . . 6  |-  ( z  =  U. A  -> 
( x  e.  ( N `  ( z 
\  { x }
) )  <->  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9897notbid 294 . . . . 5  |-  ( z  =  U. A  -> 
( -.  x  e.  ( N `  (
z  \  { x } ) )  <->  -.  x  e.  ( N `  ( U. A  \  { x } ) ) ) )
9998raleqbi1dv 3066 . . . 4  |-  ( z  =  U. A  -> 
( A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) )  <->  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x } ) ) ) )
10094, 99anbi12d 710 . . 3  |-  ( z  =  U. A  -> 
( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) )  <-> 
( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) ) )
101100, 2elrab2 3263 . 2  |-  ( U. A  e.  S  <->  ( U. A  e.  ~P V  /\  ( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) ) )
10212, 93, 101sylanbrc 664 1  |-  ( ph  ->  U. A  e.  S
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   |^|cint 4282   U_ciun 4325    Or wor 4799   ` cfv 5586   [ C.] crpss 6561   Basecbs 14483   LModclmod 17292   LSubSpclss 17358   LSpanclspn 17397  LBasisclbs 17500   LVecclvec 17528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-rpss 6562  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-plusg 14561  df-0g 14690  df-mnd 15725  df-grp 15855  df-minusg 15856  df-sbg 15857  df-mgp 16929  df-ur 16941  df-rng 16985  df-lmod 17294  df-lss 17359  df-lsp 17398  df-lvec 17529
This theorem is referenced by:  lbsextlem4  17587
  Copyright terms: Public domain W3C validator