MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Visualization version   Unicode version

Theorem lbsextlem3 18461
Description: Lemma for lbsext 18464. A chain in  S has an upper bound in  S. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.p  |-  P  =  ( LSubSp `  W )
lbsext.a  |-  ( ph  ->  A  C_  S )
lbsext.z  |-  ( ph  ->  A  =/=  (/) )
lbsext.r  |-  ( ph  -> [
C.]  Or  A )
lbsext.t  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
Assertion
Ref Expression
lbsextlem3  |-  ( ph  ->  U. A  e.  S
)
Distinct variable groups:    x, J    x, u, ph    u, S, x   
x, z, C    z, u, N, x    u, V, x, z    u, W, x    u, A, x, z
Allowed substitution hints:    ph( z)    C( u)    P( x, z, u)    S( z)    T( x, z, u)    J( z, u)    W( z)

Proof of Theorem lbsextlem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5  |-  ( ph  ->  A  C_  S )
2 lbsext.s . . . . . 6  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
3 ssrab2 3500 . . . . . 6  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
42, 3eqsstri 3448 . . . . 5  |-  S  C_  ~P V
51, 4syl6ss 3430 . . . 4  |-  ( ph  ->  A  C_  ~P V
)
6 sspwuni 4360 . . . 4  |-  ( A 
C_  ~P V  <->  U. A  C_  V )
75, 6sylib 201 . . 3  |-  ( ph  ->  U. A  C_  V
)
8 lbsext.v . . . . 5  |-  V  =  ( Base `  W
)
9 fvex 5889 . . . . 5  |-  ( Base `  W )  e.  _V
108, 9eqeltri 2545 . . . 4  |-  V  e. 
_V
1110elpw2 4565 . . 3  |-  ( U. A  e.  ~P V  <->  U. A  C_  V )
127, 11sylibr 217 . 2  |-  ( ph  ->  U. A  e.  ~P V )
13 ssintub 4244 . . . . 5  |-  C  C_  |^|
{ z  e.  ~P V  |  C  C_  z }
14 simpl 464 . . . . . . . . . 10  |-  ( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `
 ( z  \  { x } ) ) )  ->  C  C_  z )
1514a1i 11 . . . . . . . . 9  |-  ( z  e.  ~P V  -> 
( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) )  ->  C  C_  z
) )
1615ss2rabi 3497 . . . . . . . 8  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  { z  e. 
~P V  |  C  C_  z }
172, 16eqsstri 3448 . . . . . . 7  |-  S  C_  { z  e.  ~P V  |  C  C_  z }
181, 17syl6ss 3430 . . . . . 6  |-  ( ph  ->  A  C_  { z  e.  ~P V  |  C  C_  z } )
19 intss 4247 . . . . . 6  |-  ( A 
C_  { z  e. 
~P V  |  C  C_  z }  ->  |^| { z  e.  ~P V  |  C  C_  z }  C_  |^| A )
2018, 19syl 17 . . . . 5  |-  ( ph  ->  |^| { z  e. 
~P V  |  C  C_  z }  C_  |^| A
)
2113, 20syl5ss 3429 . . . 4  |-  ( ph  ->  C  C_  |^| A )
22 lbsext.z . . . . 5  |-  ( ph  ->  A  =/=  (/) )
23 intssuni 4248 . . . . 5  |-  ( A  =/=  (/)  ->  |^| A  C_  U. A )
2422, 23syl 17 . . . 4  |-  ( ph  ->  |^| A  C_  U. A
)
2521, 24sstrd 3428 . . 3  |-  ( ph  ->  C  C_  U. A )
26 eluni2 4194 . . . . 5  |-  ( x  e.  U. A  <->  E. y  e.  A  x  e.  y )
27 simpll1 1069 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  ph )
28 lbsext.w . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LVec )
29 lveclmod 18407 . . . . . . . . . . . . 13  |-  ( W  e.  LVec  ->  W  e. 
LMod )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LMod )
3127, 30syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  W  e.  LMod )
3227, 1syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  A  C_  S )
33 lbsext.r . . . . . . . . . . . . . . . . 17  |-  ( ph  -> [
C.]  Or  A )
3427, 33syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> [ C.] 
Or  A )
35 simpll2 1070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
y  e.  A )
36 simplr 770 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  u  e.  A )
37 sorpssun 6597 . . . . . . . . . . . . . . . 16  |-  ( ( [ C.]  Or  A  /\  (
y  e.  A  /\  u  e.  A )
)  ->  ( y  u.  u )  e.  A
)
3834, 35, 36, 37syl12anc 1290 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  A )
3932, 38sseldd 3419 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  S )
404, 39sseldi 3416 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  ~P V
)
4140elpwid 3952 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  C_  V )
4241ssdifssd 3560 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( ( y  u.  u )  \  {
x } )  C_  V )
43 ssun2 3589 . . . . . . . . . . . 12  |-  u  C_  ( y  u.  u
)
44 ssdif 3557 . . . . . . . . . . . 12  |-  ( u 
C_  ( y  u.  u )  ->  (
u  \  { x } )  C_  (
( y  u.  u
)  \  { x } ) )
4543, 44mp1i 13 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( u  \  {
x } )  C_  ( ( y  u.  u )  \  {
x } ) )
46 lbsext.n . . . . . . . . . . . 12  |-  N  =  ( LSpan `  W )
478, 46lspss 18285 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  (
( y  u.  u
)  \  { x } )  C_  V  /\  ( u  \  {
x } )  C_  ( ( y  u.  u )  \  {
x } ) )  ->  ( N `  ( u  \  { x } ) )  C_  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
4831, 42, 45, 47syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( N `  (
u  \  { x } ) )  C_  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
49 simpr 468 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( N `  ( u  \  {
x } ) ) )
5048, 49sseldd 3419 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( N `  ( ( y  u.  u )  \  {
x } ) ) )
51 sseq2 3440 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  u )  ->  ( C  C_  z  <->  C  C_  (
y  u.  u ) ) )
52 difeq1 3533 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y  u.  u )  ->  (
z  \  { x } )  =  ( ( y  u.  u
)  \  { x } ) )
5352fveq2d 5883 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  u.  u )  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( ( y  u.  u )  \  { x } ) ) )
5453eleq2d 2534 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  u.  u )  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( (
y  u.  u ) 
\  { x }
) ) ) )
5554notbid 301 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  u )  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
5655raleqbi1dv 2981 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  u )  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
5751, 56anbi12d 725 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  u )  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  ( y  u.  u
)  /\  A. x  e.  ( y  u.  u
)  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) ) ) )
5857, 2elrab2 3186 . . . . . . . . . . . . 13  |-  ( ( y  u.  u )  e.  S  <->  ( (
y  u.  u )  e.  ~P V  /\  ( C  C_  ( y  u.  u )  /\  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `
 ( ( y  u.  u )  \  { x } ) ) ) ) )
5958simprbi 471 . . . . . . . . . . . 12  |-  ( ( y  u.  u )  e.  S  ->  ( C  C_  ( y  u.  u )  /\  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) ) )
6059simprd 470 . . . . . . . . . . 11  |-  ( ( y  u.  u )  e.  S  ->  A. x  e.  ( y  u.  u
)  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) )
6139, 60syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  A. x  e.  (
y  u.  u )  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
62 simpll3 1071 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  y )
63 elun1 3592 . . . . . . . . . . 11  |-  ( x  e.  y  ->  x  e.  ( y  u.  u
) )
6462, 63syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( y  u.  u ) )
65 rsp 2773 . . . . . . . . . 10  |-  ( A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) )  -> 
( x  e.  ( y  u.  u )  ->  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
6661, 64, 65sylc 61 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  -.  x  e.  ( N `  ( (
y  u.  u ) 
\  { x }
) ) )
6750, 66pm2.65da 586 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A )  ->  -.  x  e.  ( N `  ( u  \  {
x } ) ) )
6867nrexdv 2842 . . . . . . 7  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  -.  E. u  e.  A  x  e.  ( N `  ( u 
\  { x }
) ) )
69 lbsext.j . . . . . . . . . . . . . . . 16  |-  J  =  (LBasis `  W )
70 lbsext.c . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  C_  V )
71 lbsext.x . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
72 lbsext.p . . . . . . . . . . . . . . . 16  |-  P  =  ( LSubSp `  W )
73 lbsext.t . . . . . . . . . . . . . . . 16  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
748, 69, 46, 28, 70, 71, 2, 72, 1, 22, 33, 73lbsextlem2 18460 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  e.  P  /\  ( U. A  \  { x } ) 
C_  T ) )
7574simpld 466 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  P )
768, 72lssss 18238 . . . . . . . . . . . . . 14  |-  ( T  e.  P  ->  T  C_  V )
7775, 76syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  T  C_  V )
7874simprd 470 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U. A  \  { x } ) 
C_  T )
798, 46lspss 18285 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  ( U. A  \  { x }
)  C_  T )  ->  ( N `  ( U. A  \  { x } ) )  C_  ( N `  T ) )
8030, 77, 78, 79syl3anc 1292 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  ( U. A  \  { x } ) )  C_  ( N `  T ) )
8172, 46lspid 18283 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  T  e.  P )  ->  ( N `  T )  =  T )
8230, 75, 81syl2anc 673 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  T
)  =  T )
8380, 82sseqtrd 3454 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  ( U. A  \  { x } ) )  C_  T )
84833ad2ant1 1051 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( N `  ( U. A  \  { x } ) )  C_  T )
8584, 73syl6sseq 3464 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( N `  ( U. A  \  { x } ) )  C_  U_ u  e.  A  ( N `  ( u  \  { x } ) ) )
8685sseld 3417 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( x  e.  ( N `  ( U. A  \  { x } ) )  ->  x  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) ) ) )
87 eliun 4274 . . . . . . . 8  |-  ( x  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) )  <->  E. u  e.  A  x  e.  ( N `  ( u 
\  { x }
) ) )
8886, 87syl6ib 234 . . . . . . 7  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( x  e.  ( N `  ( U. A  \  { x } ) )  ->  E. u  e.  A  x  e.  ( N `  ( u  \  {
x } ) ) ) )
8968, 88mtod 182 . . . . . 6  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  -.  x  e.  ( N `  ( U. A  \  { x } ) ) )
9089rexlimdv3a 2873 . . . . 5  |-  ( ph  ->  ( E. y  e.  A  x  e.  y  ->  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9126, 90syl5bi 225 . . . 4  |-  ( ph  ->  ( x  e.  U. A  ->  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9291ralrimiv 2808 . . 3  |-  ( ph  ->  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) )
9325, 92jca 541 . 2  |-  ( ph  ->  ( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
94 sseq2 3440 . . . 4  |-  ( z  =  U. A  -> 
( C  C_  z  <->  C 
C_  U. A ) )
95 difeq1 3533 . . . . . . . 8  |-  ( z  =  U. A  -> 
( z  \  {
x } )  =  ( U. A  \  { x } ) )
9695fveq2d 5883 . . . . . . 7  |-  ( z  =  U. A  -> 
( N `  (
z  \  { x } ) )  =  ( N `  ( U. A  \  { x } ) ) )
9796eleq2d 2534 . . . . . 6  |-  ( z  =  U. A  -> 
( x  e.  ( N `  ( z 
\  { x }
) )  <->  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9897notbid 301 . . . . 5  |-  ( z  =  U. A  -> 
( -.  x  e.  ( N `  (
z  \  { x } ) )  <->  -.  x  e.  ( N `  ( U. A  \  { x } ) ) ) )
9998raleqbi1dv 2981 . . . 4  |-  ( z  =  U. A  -> 
( A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) )  <->  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x } ) ) ) )
10094, 99anbi12d 725 . . 3  |-  ( z  =  U. A  -> 
( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) )  <-> 
( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) ) )
101100, 2elrab2 3186 . 2  |-  ( U. A  e.  S  <->  ( U. A  e.  ~P V  /\  ( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) ) )
10212, 93, 101sylanbrc 677 1  |-  ( ph  ->  U. A  e.  S
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   U.cuni 4190   |^|cint 4226   U_ciun 4269    Or wor 4759   ` cfv 5589   [ C.] crpss 6589   Basecbs 15199   LModclmod 18169   LSubSpclss 18233   LSpanclspn 18272  LBasisclbs 18375   LVecclvec 18403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-rpss 6590  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-plusg 15281  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mgp 17802  df-ur 17814  df-ring 17860  df-lmod 18171  df-lss 18234  df-lsp 18273  df-lvec 18404
This theorem is referenced by:  lbsextlem4  18462
  Copyright terms: Public domain W3C validator