MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem1 Structured version   Unicode version

Theorem lbsextlem1 17363
Description: Lemma for lbsext 17368. The set  S is the set of all linearly independent sets containing 
C; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
Assertion
Ref Expression
lbsextlem1  |-  ( ph  ->  S  =/=  (/) )
Distinct variable groups:    x, J    ph, x    x, S    x, z, C    x, N, z   
x, V, z    x, W
Allowed substitution hints:    ph( z)    S( z)    J( z)    W( z)

Proof of Theorem lbsextlem1
StepHypRef Expression
1 lbsext.c . . . 4  |-  ( ph  ->  C  C_  V )
2 lbsext.v . . . . . 6  |-  V  =  ( Base `  W
)
3 fvex 5810 . . . . . 6  |-  ( Base `  W )  e.  _V
42, 3eqeltri 2538 . . . . 5  |-  V  e. 
_V
54elpw2 4565 . . . 4  |-  ( C  e.  ~P V  <->  C  C_  V
)
61, 5sylibr 212 . . 3  |-  ( ph  ->  C  e.  ~P V
)
7 lbsext.x . . . 4  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
8 ssid 3484 . . . 4  |-  C  C_  C
97, 8jctil 537 . . 3  |-  ( ph  ->  ( C  C_  C  /\  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) ) )
10 sseq2 3487 . . . . 5  |-  ( z  =  C  ->  ( C  C_  z  <->  C  C_  C
) )
11 difeq1 3576 . . . . . . . . 9  |-  ( z  =  C  ->  (
z  \  { x } )  =  ( C  \  { x } ) )
1211fveq2d 5804 . . . . . . . 8  |-  ( z  =  C  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( C  \  { x } ) ) )
1312eleq2d 2524 . . . . . . 7  |-  ( z  =  C  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( C  \  { x } ) ) ) )
1413notbid 294 . . . . . 6  |-  ( z  =  C  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( C 
\  { x }
) ) ) )
1514raleqbi1dv 3031 . . . . 5  |-  ( z  =  C  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) ) )
1610, 15anbi12d 710 . . . 4  |-  ( z  =  C  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  C  /\  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x }
) ) ) ) )
17 lbsext.s . . . 4  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
1816, 17elrab2 3226 . . 3  |-  ( C  e.  S  <->  ( C  e.  ~P V  /\  ( C  C_  C  /\  A. x  e.  C  -.  x  e.  ( N `  ( C  \  {
x } ) ) ) ) )
196, 9, 18sylanbrc 664 . 2  |-  ( ph  ->  C  e.  S )
20 ne0i 3752 . 2  |-  ( C  e.  S  ->  S  =/=  (/) )
2119, 20syl 16 1  |-  ( ph  ->  S  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   {crab 2803   _Vcvv 3078    \ cdif 3434    C_ wss 3437   (/)c0 3746   ~Pcpw 3969   {csn 3986   ` cfv 5527   Basecbs 14293   LSpanclspn 17176  LBasisclbs 17279   LVecclvec 17307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-iota 5490  df-fv 5535
This theorem is referenced by:  lbsextlem4  17366
  Copyright terms: Public domain W3C validator