MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbreu Structured version   Unicode version

Theorem lbreu 10494
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Distinct variable group:    x, y, S

Proof of Theorem lbreu
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 4437 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  <_  y  <->  x  <_  w ) )
21rspcv 3190 . . . . . . . 8  |-  ( w  e.  S  ->  ( A. y  e.  S  x  <_  y  ->  x  <_  w ) )
3 breq2 4437 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  <_  y  <->  w  <_  x ) )
43rspcv 3190 . . . . . . . 8  |-  ( x  e.  S  ->  ( A. y  e.  S  w  <_  y  ->  w  <_  x ) )
52, 4im2anan9r 834 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( x  <_  w  /\  w  <_  x ) ) )
6 ssel 3480 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( x  e.  S  ->  x  e.  RR ) )
7 ssel 3480 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( w  e.  S  ->  w  e.  RR ) )
86, 7anim12d 563 . . . . . . . . . . 11  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( x  e.  RR  /\  w  e.  RR ) ) )
98impcom 430 . . . . . . . . . 10  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  e.  RR  /\  w  e.  RR ) )
10 letri3 9668 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  =  w  <-> 
( x  <_  w  /\  w  <_  x ) ) )
119, 10syl 16 . . . . . . . . 9  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  =  w  <->  ( x  <_  w  /\  w  <_  x
) ) )
1211exbiri 622 . . . . . . . 8  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( S  C_  RR  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  x  =  w ) ) )
1312com23 78 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
145, 13syld 44 . . . . . 6  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
1514com3r 79 . . . . 5  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  x  =  w ) ) )
1615ralrimivv 2861 . . . 4  |-  ( S 
C_  RR  ->  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) )
1716anim2i 569 . . 3  |-  ( ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  S  C_  RR )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
1817ancoms 453 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
19 breq1 4436 . . . 4  |-  ( x  =  w  ->  (
x  <_  y  <->  w  <_  y ) )
2019ralbidv 2880 . . 3  |-  ( x  =  w  ->  ( A. y  e.  S  x  <_  y  <->  A. y  e.  S  w  <_  y ) )
2120reu4 3277 . 2  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  <->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) ) )
2218, 21sylibr 212 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1802   A.wral 2791   E.wrex 2792   E!wreu 2793    C_ wss 3458   class class class wbr 4433   RRcr 9489    <_ cle 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-resscn 9547  ax-pre-lttri 9564  ax-pre-lttrn 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-po 4786  df-so 4787  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632
This theorem is referenced by:  lbcl  10495  lble  10496  uzwo2  11150  uzinfmi  11165
  Copyright terms: Public domain W3C validator