MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbreu Structured version   Unicode version

Theorem lbreu 10392
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Distinct variable group:    x, y, S

Proof of Theorem lbreu
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 4405 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  <_  y  <->  x  <_  w ) )
21rspcv 3175 . . . . . . . 8  |-  ( w  e.  S  ->  ( A. y  e.  S  x  <_  y  ->  x  <_  w ) )
3 breq2 4405 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  <_  y  <->  w  <_  x ) )
43rspcv 3175 . . . . . . . 8  |-  ( x  e.  S  ->  ( A. y  e.  S  w  <_  y  ->  w  <_  x ) )
52, 4im2anan9r 832 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( x  <_  w  /\  w  <_  x ) ) )
6 ssel 3459 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( x  e.  S  ->  x  e.  RR ) )
7 ssel 3459 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( w  e.  S  ->  w  e.  RR ) )
86, 7anim12d 563 . . . . . . . . . . 11  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( x  e.  RR  /\  w  e.  RR ) ) )
98impcom 430 . . . . . . . . . 10  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  e.  RR  /\  w  e.  RR ) )
10 letri3 9572 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  =  w  <-> 
( x  <_  w  /\  w  <_  x ) ) )
119, 10syl 16 . . . . . . . . 9  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  =  w  <->  ( x  <_  w  /\  w  <_  x
) ) )
1211exbiri 622 . . . . . . . 8  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( S  C_  RR  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  x  =  w ) ) )
1312com23 78 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
145, 13syld 44 . . . . . 6  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
1514com3r 79 . . . . 5  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  x  =  w ) ) )
1615ralrimivv 2913 . . . 4  |-  ( S 
C_  RR  ->  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) )
1716anim2i 569 . . 3  |-  ( ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  S  C_  RR )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
1817ancoms 453 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
19 breq1 4404 . . . 4  |-  ( x  =  w  ->  (
x  <_  y  <->  w  <_  y ) )
2019ralbidv 2846 . . 3  |-  ( x  =  w  ->  ( A. y  e.  S  x  <_  y  <->  A. y  e.  S  w  <_  y ) )
2120reu4 3260 . 2  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  <->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) ) )
2218, 21sylibr 212 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758   A.wral 2799   E.wrex 2800   E!wreu 2801    C_ wss 3437   class class class wbr 4401   RRcr 9393    <_ cle 9531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-pre-lttri 9468  ax-pre-lttrn 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536
This theorem is referenced by:  lbcl  10393  lble  10394  uzwo2  11031  uzinfmi  11046
  Copyright terms: Public domain W3C validator