MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lble Structured version   Unicode version

Theorem lble 10386
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A
)
Distinct variable groups:    x, y, S    y, A
Allowed substitution hint:    A( x)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 10384 . . . . 5  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
2 nfcv 2613 . . . . . . 7  |-  F/_ x S
3 nfriota1 6161 . . . . . . . 8  |-  F/_ x
( iota_ x  e.  S  A. y  e.  S  x  <_  y )
4 nfcv 2613 . . . . . . . 8  |-  F/_ x  <_
5 nfcv 2613 . . . . . . . 8  |-  F/_ x
y
63, 4, 5nfbr 4437 . . . . . . 7  |-  F/ x
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y
72, 6nfral 2881 . . . . . 6  |-  F/ x A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y
8 eqid 2451 . . . . . 6  |-  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )
9 nfra1 2806 . . . . . . . . 9  |-  F/ y A. y  e.  S  x  <_  y
10 nfcv 2613 . . . . . . . . 9  |-  F/_ y S
119, 10nfriota 6163 . . . . . . . 8  |-  F/_ y
( iota_ x  e.  S  A. y  e.  S  x  <_  y )
1211nfeq2 2629 . . . . . . 7  |-  F/ y  x  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )
13 breq1 4396 . . . . . . 7  |-  ( x  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  ->  ( x  <_  y  <->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  <_  y )
)
1412, 13ralbid 2838 . . . . . 6  |-  ( x  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  ->  ( A. y  e.  S  x  <_  y  <->  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y ) )
157, 8, 14riotaprop 6178 . . . . 5  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  ->  ( ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  /\  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y ) )
161, 15syl 16 . . . 4  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  (
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  /\  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  y )
)
1716simprd 463 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  y )
18 nfcv 2613 . . . . 5  |-  F/_ y  <_
19 nfcv 2613 . . . . 5  |-  F/_ y A
2011, 18, 19nfbr 4437 . . . 4  |-  F/ y ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A
21 breq2 4397 . . . 4  |-  ( y  =  A  ->  (
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y  <->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  <_  A )
)
2220, 21rspc 3166 . . 3  |-  ( A  e.  S  ->  ( A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A )
)
2317, 22mpan9 469 . 2  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  A  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A )
24233impa 1183 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   E!wreu 2797    C_ wss 3429   class class class wbr 4393   iota_crio 6153   RRcr 9385    <_ cle 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-resscn 9443  ax-pre-lttri 9460  ax-pre-lttrn 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-po 4742  df-so 4743  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528
This theorem is referenced by:  lbinfm  10387  lbinfmle  10389
  Copyright terms: Public domain W3C validator