Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Structured version   Unicode version

Theorem lautset 33112
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b  |-  B  =  ( Base `  K
)
lautset.l  |-  .<_  =  ( le `  K )
lautset.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautset  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
Distinct variable groups:    x, f,
y, B    f, K, x, y    .<_ , f
Allowed substitution hints:    A( x, y, f)    I( x, y, f)    .<_ ( x, y)

Proof of Theorem lautset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3070 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 lautset.i . . 3  |-  I  =  ( LAut `  K
)
3 fveq2 5851 . . . . . . . . 9  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 lautset.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2463 . . . . . . . 8  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 f1oeq2 5793 . . . . . . . 8  |-  ( (
Base `  k )  =  B  ->  ( f : ( Base `  k
)
-1-1-onto-> ( Base `  k )  <->  f : B -1-1-onto-> ( Base `  k
) ) )
75, 6syl 17 . . . . . . 7  |-  ( k  =  K  ->  (
f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> ( Base `  k ) ) )
8 f1oeq3 5794 . . . . . . . 8  |-  ( (
Base `  k )  =  B  ->  ( f : B -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> B
) )
95, 8syl 17 . . . . . . 7  |-  ( k  =  K  ->  (
f : B -1-1-onto-> ( Base `  k )  <->  f : B
-1-1-onto-> B ) )
107, 9bitrd 255 . . . . . 6  |-  ( k  =  K  ->  (
f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> B
) )
11 fveq2 5851 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
12 lautset.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
1311, 12syl6eqr 2463 . . . . . . . . . 10  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1413breqd 4408 . . . . . . . . 9  |-  ( k  =  K  ->  (
x ( le `  k ) y  <->  x  .<_  y ) )
1513breqd 4408 . . . . . . . . 9  |-  ( k  =  K  ->  (
( f `  x
) ( le `  k ) ( f `
 y )  <->  ( f `  x )  .<_  ( f `
 y ) ) )
1614, 15bibi12d 321 . . . . . . . 8  |-  ( k  =  K  ->  (
( x ( le
`  k ) y  <-> 
( f `  x
) ( le `  k ) ( f `
 y ) )  <-> 
( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
175, 16raleqbidv 3020 . . . . . . 7  |-  ( k  =  K  ->  ( A. y  e.  ( Base `  k ) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) )  <->  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
185, 17raleqbidv 3020 . . . . . 6  |-  ( k  =  K  ->  ( A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k
) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
1910, 18anbi12d 711 . . . . 5  |-  ( k  =  K  ->  (
( f : (
Base `  k ) -1-1-onto-> ( Base `  k )  /\  A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) )  <->  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) ) )
2019abbidv 2540 . . . 4  |-  ( k  =  K  ->  { f  |  ( f : ( Base `  k
)
-1-1-onto-> ( Base `  k )  /\  A. x  e.  (
Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) }  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
21 df-laut 33019 . . . 4  |-  LAut  =  ( k  e.  _V  |->  { f  |  ( f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  /\  A. x  e.  ( Base `  k
) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) } )
22 fvex 5861 . . . . . . . . 9  |-  ( Base `  K )  e.  _V
234, 22eqeltri 2488 . . . . . . . 8  |-  B  e. 
_V
2423, 23mapval 7471 . . . . . . 7  |-  ( B  ^m  B )  =  { f  |  f : B --> B }
25 ovex 6308 . . . . . . 7  |-  ( B  ^m  B )  e. 
_V
2624, 25eqeltrri 2489 . . . . . 6  |-  { f  |  f : B --> B }  e.  _V
27 f1of 5801 . . . . . . 7  |-  ( f : B -1-1-onto-> B  ->  f : B
--> B )
2827ss2abi 3513 . . . . . 6  |-  { f  |  f : B -1-1-onto-> B }  C_  { f  |  f : B --> B }
2926, 28ssexi 4541 . . . . 5  |-  { f  |  f : B -1-1-onto-> B }  e.  _V
30 simpl 457 . . . . . 6  |-  ( ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) )  ->  f : B
-1-1-onto-> B )
3130ss2abi 3513 . . . . 5  |-  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  C_  { f  |  f : B -1-1-onto-> B }
3229, 31ssexi 4541 . . . 4  |-  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  e.  _V
3320, 21, 32fvmpt 5934 . . 3  |-  ( K  e.  _V  ->  ( LAut `  K )  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
342, 33syl5eq 2457 . 2  |-  ( K  e.  _V  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
351, 34syl 17 1  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844   {cab 2389   A.wral 2756   _Vcvv 3061   class class class wbr 4397   -->wf 5567   -1-1-onto->wf1o 5570   ` cfv 5571  (class class class)co 6280    ^m cmap 7459   Basecbs 14843   lecple 14918   LAutclaut 33015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-map 7461  df-laut 33019
This theorem is referenced by:  islaut  33113
  Copyright terms: Public domain W3C validator