Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautco Structured version   Unicode version

Theorem lautco 34893
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypothesis
Ref Expression
lautco.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautco  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  ( F  o.  G
)  e.  I )

Proof of Theorem lautco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
2 lautco.i . . . . 5  |-  I  =  ( LAut `  K
)
31, 2laut1o 34881 . . . 4  |-  ( ( K  e.  V  /\  F  e.  I )  ->  F : ( Base `  K ) -1-1-onto-> ( Base `  K
) )
433adant3 1016 . . 3  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  F : ( Base `  K ) -1-1-onto-> ( Base `  K
) )
51, 2laut1o 34881 . . . 4  |-  ( ( K  e.  V  /\  G  e.  I )  ->  G : ( Base `  K ) -1-1-onto-> ( Base `  K
) )
653adant2 1015 . . 3  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  G : ( Base `  K ) -1-1-onto-> ( Base `  K
) )
7 f1oco 5836 . . 3  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )  ->  ( F  o.  G ) : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
84, 6, 7syl2anc 661 . 2  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  ( F  o.  G
) : ( Base `  K ) -1-1-onto-> ( Base `  K
) )
9 simpl1 999 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  K  e.  V )
10 simpl2 1000 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  F  e.  I )
11 simpl3 1001 . . . . . 6  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  G  e.  I )
12 simprl 755 . . . . . 6  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  x  e.  ( Base `  K
) )
131, 2lautcl 34883 . . . . . 6  |-  ( ( ( K  e.  V  /\  G  e.  I
)  /\  x  e.  ( Base `  K )
)  ->  ( G `  x )  e.  (
Base `  K )
)
149, 11, 12, 13syl21anc 1227 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  ( G `  x )  e.  ( Base `  K
) )
15 simprr 756 . . . . . 6  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  y  e.  ( Base `  K
) )
161, 2lautcl 34883 . . . . . 6  |-  ( ( ( K  e.  V  /\  G  e.  I
)  /\  y  e.  ( Base `  K )
)  ->  ( G `  y )  e.  (
Base `  K )
)
179, 11, 15, 16syl21anc 1227 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  ( G `  y )  e.  ( Base `  K
) )
18 eqid 2467 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
191, 18, 2lautle 34880 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( ( G `  x )  e.  ( Base `  K
)  /\  ( G `  y )  e.  (
Base `  K )
) )  ->  (
( G `  x
) ( le `  K ) ( G `
 y )  <->  ( F `  ( G `  x
) ) ( le
`  K ) ( F `  ( G `
 y ) ) ) )
209, 10, 14, 17, 19syl22anc 1229 . . . 4  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
( G `  x
) ( le `  K ) ( G `
 y )  <->  ( F `  ( G `  x
) ) ( le
`  K ) ( F `  ( G `
 y ) ) ) )
211, 18, 2lautle 34880 . . . . 5  |-  ( ( ( K  e.  V  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( le `  K ) y  <->  ( G `  x ) ( le
`  K ) ( G `  y ) ) )
22213adantl2 1153 . . . 4  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( le `  K ) y  <->  ( G `  x ) ( le
`  K ) ( G `  y ) ) )
23 f1of 5814 . . . . . . 7  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
246, 23syl 16 . . . . . 6  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  G : ( Base `  K ) --> ( Base `  K ) )
25 simpl 457 . . . . . 6  |-  ( ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  x  e.  ( Base `  K
) )
26 fvco3 5942 . . . . . 6  |-  ( ( G : ( Base `  K ) --> ( Base `  K )  /\  x  e.  ( Base `  K
) )  ->  (
( F  o.  G
) `  x )  =  ( F `  ( G `  x ) ) )
2724, 25, 26syl2an 477 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
( F  o.  G
) `  x )  =  ( F `  ( G `  x ) ) )
28 simpr 461 . . . . . 6  |-  ( ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  y  e.  ( Base `  K
) )
29 fvco3 5942 . . . . . 6  |-  ( ( G : ( Base `  K ) --> ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
3024, 28, 29syl2an 477 . . . . 5  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
3127, 30breq12d 4460 . . . 4  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
( ( F  o.  G ) `  x
) ( le `  K ) ( ( F  o.  G ) `
 y )  <->  ( F `  ( G `  x
) ) ( le
`  K ) ( F `  ( G `
 y ) ) ) )
3220, 22, 313bitr4d 285 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I
)  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( le `  K ) y  <->  ( ( F  o.  G ) `  x ) ( le
`  K ) ( ( F  o.  G
) `  y )
) )
3332ralrimivva 2885 . 2  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  A. x  e.  (
Base `  K ) A. y  e.  ( Base `  K ) ( x ( le `  K ) y  <->  ( ( F  o.  G ) `  x ) ( le
`  K ) ( ( F  o.  G
) `  y )
) )
341, 18, 2islaut 34879 . . 3  |-  ( K  e.  V  ->  (
( F  o.  G
)  e.  I  <->  ( ( F  o.  G ) : ( Base `  K
)
-1-1-onto-> ( Base `  K )  /\  A. x  e.  (
Base `  K ) A. y  e.  ( Base `  K ) ( x ( le `  K ) y  <->  ( ( F  o.  G ) `  x ) ( le
`  K ) ( ( F  o.  G
) `  y )
) ) ) )
35343ad2ant1 1017 . 2  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  ( ( F  o.  G )  e.  I  <->  ( ( F  o.  G
) : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  A. x  e.  ( Base `  K
) A. y  e.  ( Base `  K
) ( x ( le `  K ) y  <->  ( ( F  o.  G ) `  x ) ( le
`  K ) ( ( F  o.  G
) `  y )
) ) ) )
368, 33, 35mpbir2and 920 1  |-  ( ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  ( F  o.  G
)  e.  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   class class class wbr 4447    o. ccom 5003   -->wf 5582   -1-1-onto->wf1o 5585   ` cfv 5586   Basecbs 14486   lecple 14558   LAutclaut 34781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-laut 34785
This theorem is referenced by:  ldilco  34912
  Copyright terms: Public domain W3C validator