![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > latnlej1r | Structured version Unicode version |
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
Ref | Expression |
---|---|
latlej.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
latlej.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
latlej.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
latnlej1r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | latlej.l |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | latlej.j |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | latnlej 15337 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | simprd 463 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-rep 4498 ax-sep 4508 ax-nul 4516 ax-pow 4565 ax-pr 4626 ax-un 6469 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2599 df-ne 2644 df-ral 2798 df-rex 2799 df-reu 2800 df-rab 2802 df-v 3067 df-sbc 3282 df-csb 3384 df-dif 3426 df-un 3428 df-in 3430 df-ss 3437 df-nul 3733 df-if 3887 df-pw 3957 df-sn 3973 df-pr 3975 df-op 3979 df-uni 4187 df-iun 4268 df-br 4388 df-opab 4446 df-mpt 4447 df-id 4731 df-xp 4941 df-rel 4942 df-cnv 4943 df-co 4944 df-dm 4945 df-rn 4946 df-res 4947 df-ima 4948 df-iota 5476 df-fun 5515 df-fn 5516 df-f 5517 df-f1 5518 df-fo 5519 df-f1o 5520 df-fv 5521 df-riota 6148 df-ov 6190 df-oprab 6191 df-lub 15243 df-join 15245 df-lat 15315 |
This theorem is referenced by: atnlej2 33327 3noncolr2 33396 4noncolr3 33400 3atlem5 33434 ps-2c 33475 lhpexle3lem 33958 cdleme0e 34164 cdleme11c 34208 cdleme11e 34210 |
Copyright terms: Public domain | W3C validator |