MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem12 Structured version   Unicode version

Theorem latmlem12 15252
Description: Add join to both sides of a lattice ordering. (ss2in 3576 analog.) (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b  |-  B  =  ( Base `  K
)
latmle.l  |-  .<_  =  ( le `  K )
latmle.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latmlem12  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( X  .<_  Y  /\  Z  .<_  W )  ->  ( X  ./\  Z )  .<_  ( Y  ./\ 
W ) ) )

Proof of Theorem latmlem12
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  K  e.  Lat )
2 simp2l 1014 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  X  e.  B )
3 simp2r 1015 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  Y  e.  B )
4 simp3l 1016 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  Z  e.  B )
5 latmle.b . . . 4  |-  B  =  ( Base `  K
)
6 latmle.l . . . 4  |-  .<_  =  ( le `  K )
7 latmle.m . . . 4  |-  ./\  =  ( meet `  K )
85, 6, 7latmlem1 15250 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  Z )  .<_  ( Y  ./\  Z ) ) )
91, 2, 3, 4, 8syl13anc 1220 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( X  .<_  Y  -> 
( X  ./\  Z
)  .<_  ( Y  ./\  Z ) ) )
10 simp3r 1017 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  W  e.  B )
115, 6, 7latmlem2 15251 . . 3  |-  ( ( K  e.  Lat  /\  ( Z  e.  B  /\  W  e.  B  /\  Y  e.  B
) )  ->  ( Z  .<_  W  ->  ( Y  ./\  Z )  .<_  ( Y  ./\  W ) ) )
121, 4, 10, 3, 11syl13anc 1220 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Z  .<_  W  -> 
( Y  ./\  Z
)  .<_  ( Y  ./\  W ) ) )
135, 7latmcl 15221 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  e.  B )
141, 2, 4, 13syl3anc 1218 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( X  ./\  Z
)  e.  B )
155, 7latmcl 15221 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
161, 3, 4, 15syl3anc 1218 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Y  ./\  Z
)  e.  B )
175, 7latmcl 15221 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  ./\  W
)  e.  B )
181, 3, 10, 17syl3anc 1218 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Y  ./\  W
)  e.  B )
195, 6lattr 15225 . . 3  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Z )  e.  B  /\  ( Y  ./\  Z )  e.  B  /\  ( Y  ./\  W )  e.  B ) )  -> 
( ( ( X 
./\  Z )  .<_  ( Y  ./\  Z )  /\  ( Y  ./\  Z )  .<_  ( Y  ./\ 
W ) )  -> 
( X  ./\  Z
)  .<_  ( Y  ./\  W ) ) )
201, 14, 16, 18, 19syl13anc 1220 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( ( X 
./\  Z )  .<_  ( Y  ./\  Z )  /\  ( Y  ./\  Z )  .<_  ( Y  ./\ 
W ) )  -> 
( X  ./\  Z
)  .<_  ( Y  ./\  W ) ) )
219, 12, 20syl2and 483 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( X  .<_  Y  /\  Z  .<_  W )  ->  ( X  ./\  Z )  .<_  ( Y  ./\ 
W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4291   ` cfv 5417  (class class class)co 6090   Basecbs 14173   lecple 14244   meetcmee 15114   Latclat 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-poset 15115  df-lub 15143  df-glb 15144  df-join 15145  df-meet 15146  df-lat 15215
This theorem is referenced by:  dalem10  33315  dalem55  33369  dalawlem3  33515  dalawlem7  33519  dalawlem11  33523  dalawlem12  33524  cdlemk51  34595
  Copyright terms: Public domain W3C validator