MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem1 Structured version   Unicode version

Theorem latmlem1 15571
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b  |-  B  =  ( Base `  K
)
latmle.l  |-  .<_  =  ( le `  K )
latmle.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latmlem1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  Z )  .<_  ( Y  ./\  Z ) ) )

Proof of Theorem latmlem1
StepHypRef Expression
1 latmle.b . . . . . 6  |-  B  =  ( Base `  K
)
2 latmle.l . . . . . 6  |-  .<_  =  ( le `  K )
3 latmle.m . . . . . 6  |-  ./\  =  ( meet `  K )
41, 2, 3latmle1 15566 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  .<_  X )
543adant3r2 1206 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  .<_  X )
6 simpl 457 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
71, 3latmcl 15542 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  e.  B )
873adant3r2 1206 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  e.  B )
9 simpr1 1002 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
10 simpr2 1003 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
111, 2lattr 15546 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Z )  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( X  ./\  Z
)  .<_  X  /\  X  .<_  Y )  ->  ( X  ./\  Z )  .<_  Y ) )
126, 8, 9, 10, 11syl13anc 1230 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  ./\  Z )  .<_  X  /\  X  .<_  Y )  -> 
( X  ./\  Z
)  .<_  Y ) )
135, 12mpand 675 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  Z )  .<_  Y ) )
141, 2, 3latmle2 15567 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  .<_  Z )
15143adant3r2 1206 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  .<_  Z )
1613, 15jctird 544 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  (
( X  ./\  Z
)  .<_  Y  /\  ( X  ./\  Z )  .<_  Z ) ) )
17 simpr3 1004 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
188, 10, 173jca 1176 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Z
)  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)
191, 2, 3latlem12 15568 . . 3  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Z )  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( (
( X  ./\  Z
)  .<_  Y  /\  ( X  ./\  Z )  .<_  Z )  <->  ( X  ./\ 
Z )  .<_  ( Y 
./\  Z ) ) )
2018, 19syldan 470 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  ./\  Z )  .<_  Y  /\  ( X  ./\  Z ) 
.<_  Z )  <->  ( X  ./\ 
Z )  .<_  ( Y 
./\  Z ) ) )
2116, 20sylibd 214 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  Z )  .<_  ( Y  ./\  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5588  (class class class)co 6285   Basecbs 14493   lecple 14565   meetcmee 15435   Latclat 15535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-poset 15436  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-lat 15536
This theorem is referenced by:  latmlem2  15572  latmlem12  15573  dalem25  34711  dalawlem2  34885  dalawlem11  34894  dalawlem12  34895  cdleme22d  35356  cdleme30a  35391  cdleme32c  35456  cdleme32e  35458  trlcolem  35739  cdlemk5u  35874  cdlemk39  35929  cdlemm10N  36132  cdlemn2  36209  dihord1  36232
  Copyright terms: Public domain W3C validator