MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej2 Structured version   Unicode version

Theorem latjlej2 15257
Description: Add join to both sides of a lattice ordering. (chlej2i 24899 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b  |-  B  =  ( Base `  K
)
latlej.l  |-  .<_  =  ( le `  K )
latlej.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjlej2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )

Proof of Theorem latjlej2
StepHypRef Expression
1 latlej.b . . 3  |-  B  =  ( Base `  K
)
2 latlej.l . . 3  |-  .<_  =  ( le `  K )
3 latlej.j . . 3  |-  .\/  =  ( join `  K )
41, 2, 3latjlej1 15256 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )
51, 3latjcom 15250 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .\/  Z
)  =  ( Z 
.\/  X ) )
653adant3r2 1197 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Z )  =  ( Z  .\/  X
) )
71, 3latjcom 15250 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  =  ( Z 
.\/  Y ) )
873adant3r1 1196 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  =  ( Z  .\/  Y
) )
96, 8breq12d 4326 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Z
)  .<_  ( Y  .\/  Z )  <->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )
104, 9sylibd 214 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   Basecbs 14195   lecple 14266   joincjn 15135   Latclat 15236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-poset 15137  df-lub 15165  df-glb 15166  df-join 15167  df-meet 15168  df-lat 15237
This theorem is referenced by:  latjlej12  15258  cvrat3  33182  2llnjaN  33306  2lplnja  33359  dalawlem3  33613  dalawlem6  33616  dalawlem11  33621  lhpj1  33762  cdleme1  33967  cdleme9  33993  cdleme11g  34005  cdleme28a  34110  cdleme30a  34118  cdleme32c  34183  cdlemi1  34558  cdlemk11  34589  cdlemk11u  34611  cdlemk51  34693  cdlemm10N  34859  cdlemn10  34947
  Copyright terms: Public domain W3C validator