MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj12 Structured version   Unicode version

Theorem latj12 15264
Description: Swap 1st and 2nd members of lattice join. (chj12 24935 analog.) (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
latjass.b  |-  B  =  ( Base `  K
)
latjass.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latj12  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  .\/  Z ) )  =  ( Y  .\/  ( X 
.\/  Z ) ) )

Proof of Theorem latj12
StepHypRef Expression
1 latjass.b . . . . 5  |-  B  =  ( Base `  K
)
2 latjass.j . . . . 5  |-  .\/  =  ( join `  K )
31, 2latjcom 15227 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  =  ( Y 
.\/  X ) )
433adant3r3 1198 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Y )  =  ( Y  .\/  X
) )
54oveq1d 6104 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( ( Y 
.\/  X )  .\/  Z ) )
61, 2latjass 15263 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( X  .\/  ( Y  .\/  Z ) ) )
7 simpl 457 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
8 simpr2 995 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
9 simpr1 994 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
10 simpr3 996 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
111, 2latjass 15263 . . 3  |-  ( ( K  e.  Lat  /\  ( Y  e.  B  /\  X  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  X
)  .\/  Z )  =  ( Y  .\/  ( X  .\/  Z ) ) )
127, 8, 9, 10, 11syl13anc 1220 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  X
)  .\/  Z )  =  ( Y  .\/  ( X  .\/  Z ) ) )
135, 6, 123eqtr3d 2481 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  .\/  Z ) )  =  ( Y  .\/  ( X 
.\/  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5416  (class class class)co 6089   Basecbs 14172   joincjn 15112   Latclat 15213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-poset 15114  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-lat 15214
This theorem is referenced by:  latj31  15267  latj4  15269  4atlem4b  33241  4atlem4c  33242  dalawlem3  33514  cdleme1  33868  cdleme5  33881  cdleme11g  33906
  Copyright terms: Public domain W3C validator