MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg Structured version   Unicode version

Theorem lagsubg 16878
Description: Lagrange theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
lagsubg.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
lagsubg  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  ||  ( # `  X ) )

Proof of Theorem lagsubg
StepHypRef Expression
1 simpr 462 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  X  e.  Fin )
2 pwfi 7878 . . . . . . 7  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
31, 2sylib 199 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ~P X  e.  Fin )
4 lagsubg.1 . . . . . . . . 9  |-  X  =  ( Base `  G
)
5 eqid 2422 . . . . . . . . 9  |-  ( G ~QG  Y )  =  ( G ~QG  Y )
64, 5eqger 16866 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G ~QG  Y
)  Er  X )
76adantr 466 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( G ~QG  Y )  Er  X
)
87qsss 7435 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( X /. ( G ~QG  Y ) )  C_  ~P X
)
9 ssfi 7801 . . . . . 6  |-  ( ( ~P X  e.  Fin  /\  ( X /. ( G ~QG  Y ) )  C_  ~P X )  ->  ( X /. ( G ~QG  Y ) )  e.  Fin )
103, 8, 9syl2anc 665 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( X /. ( G ~QG  Y ) )  e.  Fin )
11 hashcl 12544 . . . . 5  |-  ( ( X /. ( G ~QG  Y ) )  e.  Fin  ->  ( # `  ( X /. ( G ~QG  Y ) ) )  e.  NN0 )
1210, 11syl 17 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 ( X /. ( G ~QG  Y ) ) )  e.  NN0 )
1312nn0zd 11045 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 ( X /. ( G ~QG  Y ) ) )  e.  ZZ )
14 id 22 . . . . . 6  |-  ( X  e.  Fin  ->  X  e.  Fin )
154subgss 16817 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
16 ssfi 7801 . . . . . 6  |-  ( ( X  e.  Fin  /\  Y  C_  X )  ->  Y  e.  Fin )
1714, 15, 16syl2anr 480 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  Y  e.  Fin )
18 hashcl 12544 . . . . 5  |-  ( Y  e.  Fin  ->  ( # `
 Y )  e. 
NN0 )
1917, 18syl 17 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  e. 
NN0 )
2019nn0zd 11045 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  e.  ZZ )
21 dvdsmul2 14324 . . 3  |-  ( ( ( # `  ( X /. ( G ~QG  Y ) ) )  e.  ZZ  /\  ( # `  Y
)  e.  ZZ )  ->  ( # `  Y
)  ||  ( ( # `
 ( X /. ( G ~QG  Y ) ) )  x.  ( # `  Y
) ) )
2213, 20, 21syl2anc 665 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  ||  ( ( # `  ( X /. ( G ~QG  Y ) ) )  x.  ( # `
 Y ) ) )
23 simpl 458 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  Y  e.  (SubGrp `  G )
)
244, 5, 23, 1lagsubg2 16877 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 X )  =  ( ( # `  ( X /. ( G ~QG  Y ) ) )  x.  ( # `
 Y ) ) )
2522, 24breqtrrd 4450 1  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  ||  ( # `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872    C_ wss 3436   ~Pcpw 3981   class class class wbr 4423   ` cfv 5601  (class class class)co 6305    Er wer 7371   /.cqs 7373   Fincfn 7580    x. cmul 9551   NN0cn0 10876   ZZcz 10944   #chash 12521    || cdvds 14304   Basecbs 15120  SubGrpcsubg 16810   ~QG cqg 16812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-disj 4395  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-ec 7376  df-qs 7380  df-map 7485  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-sup 7965  df-oi 8034  df-card 8381  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-fz 11792  df-fzo 11923  df-seq 12220  df-exp 12279  df-hash 12522  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13551  df-sum 13752  df-dvds 14305  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-0g 15339  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-grp 16672  df-minusg 16673  df-subg 16813  df-eqg 16815
This theorem is referenced by:  oddvds2  17216  fislw  17276  sylow3lem4  17281  ablfacrp2  17699  ablfac1c  17703  ablfac1eu  17705
  Copyright terms: Public domain W3C validator