MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg Structured version   Unicode version

Theorem lagsubg 16132
Description: Lagrange theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
lagsubg.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
lagsubg  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  ||  ( # `  X ) )

Proof of Theorem lagsubg
StepHypRef Expression
1 simpr 461 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  X  e.  Fin )
2 pwfi 7813 . . . . . . 7  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
31, 2sylib 196 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ~P X  e.  Fin )
4 lagsubg.1 . . . . . . . . 9  |-  X  =  ( Base `  G
)
5 eqid 2441 . . . . . . . . 9  |-  ( G ~QG  Y )  =  ( G ~QG  Y )
64, 5eqger 16120 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G ~QG  Y
)  Er  X )
76adantr 465 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( G ~QG  Y )  Er  X
)
87qsss 7370 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( X /. ( G ~QG  Y ) )  C_  ~P X
)
9 ssfi 7738 . . . . . 6  |-  ( ( ~P X  e.  Fin  /\  ( X /. ( G ~QG  Y ) )  C_  ~P X )  ->  ( X /. ( G ~QG  Y ) )  e.  Fin )
103, 8, 9syl2anc 661 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( X /. ( G ~QG  Y ) )  e.  Fin )
11 hashcl 12402 . . . . 5  |-  ( ( X /. ( G ~QG  Y ) )  e.  Fin  ->  ( # `  ( X /. ( G ~QG  Y ) ) )  e.  NN0 )
1210, 11syl 16 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 ( X /. ( G ~QG  Y ) ) )  e.  NN0 )
1312nn0zd 10967 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 ( X /. ( G ~QG  Y ) ) )  e.  ZZ )
14 id 22 . . . . . 6  |-  ( X  e.  Fin  ->  X  e.  Fin )
154subgss 16071 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
16 ssfi 7738 . . . . . 6  |-  ( ( X  e.  Fin  /\  Y  C_  X )  ->  Y  e.  Fin )
1714, 15, 16syl2anr 478 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  Y  e.  Fin )
18 hashcl 12402 . . . . 5  |-  ( Y  e.  Fin  ->  ( # `
 Y )  e. 
NN0 )
1917, 18syl 16 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  e. 
NN0 )
2019nn0zd 10967 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  e.  ZZ )
21 dvdsmul2 13878 . . 3  |-  ( ( ( # `  ( X /. ( G ~QG  Y ) ) )  e.  ZZ  /\  ( # `  Y
)  e.  ZZ )  ->  ( # `  Y
)  ||  ( ( # `
 ( X /. ( G ~QG  Y ) ) )  x.  ( # `  Y
) ) )
2213, 20, 21syl2anc 661 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  ||  ( ( # `  ( X /. ( G ~QG  Y ) ) )  x.  ( # `
 Y ) ) )
23 simpl 457 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  Y  e.  (SubGrp `  G )
)
244, 5, 23, 1lagsubg2 16131 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 X )  =  ( ( # `  ( X /. ( G ~QG  Y ) ) )  x.  ( # `
 Y ) ) )
2522, 24breqtrrd 4459 1  |-  ( ( Y  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 Y )  ||  ( # `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802    C_ wss 3458   ~Pcpw 3993   class class class wbr 4433   ` cfv 5574  (class class class)co 6277    Er wer 7306   /.cqs 7308   Fincfn 7514    x. cmul 9495   NN0cn0 10796   ZZcz 10865   #chash 12379    || cdvds 13858   Basecbs 14504  SubGrpcsubg 16064   ~QG cqg 16066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-disj 4404  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-ec 7311  df-qs 7315  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-oi 7933  df-card 8318  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fzo 11799  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-clim 13285  df-sum 13483  df-dvds 13859  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-0g 14711  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-grp 15926  df-minusg 15927  df-subg 16067  df-eqg 16069
This theorem is referenced by:  oddvds2  16457  fislw  16514  sylow3lem4  16519  ablfacrp2  16986  ablfac1c  16990  ablfac1eu  16992
  Copyright terms: Public domain W3C validator