MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0lem Structured version   Unicode version

Theorem kqt0lem 19331
Description: Lemma for kqt0 19341. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqt0lem  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  Kol2 )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqt0lem
Dummy variables  w  z  a  b  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqopn 19329 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  ->  ( F " w )  e.  (KQ `  J ) )
32adantlr 714 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  /\  w  e.  J )  ->  ( F " w )  e.  (KQ `  J ) )
4 eleq2 2504 . . . . . . . . . 10  |-  ( z  =  ( F "
w )  ->  (
( F `  a
)  e.  z  <->  ( F `  a )  e.  ( F " w ) ) )
5 eleq2 2504 . . . . . . . . . 10  |-  ( z  =  ( F "
w )  ->  (
( F `  b
)  e.  z  <->  ( F `  b )  e.  ( F " w ) ) )
64, 5bibi12d 321 . . . . . . . . 9  |-  ( z  =  ( F "
w )  ->  (
( ( F `  a )  e.  z  <-> 
( F `  b
)  e.  z )  <-> 
( ( F `  a )  e.  ( F " w )  <-> 
( F `  b
)  e.  ( F
" w ) ) ) )
76rspcv 3090 . . . . . . . 8  |-  ( ( F " w )  e.  (KQ `  J
)  ->  ( A. z  e.  (KQ `  J
) ( ( F `
 a )  e.  z  <->  ( F `  b )  e.  z )  ->  ( ( F `  a )  e.  ( F " w
)  <->  ( F `  b )  e.  ( F " w ) ) ) )
83, 7syl 16 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  /\  w  e.  J )  ->  ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <->  ( F `  b )  e.  z )  ->  ( ( F `  a )  e.  ( F " w
)  <->  ( F `  b )  e.  ( F " w ) ) ) )
91kqfvima 19325 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J  /\  a  e.  X )  ->  (
a  e.  w  <->  ( F `  a )  e.  ( F " w ) ) )
1093expa 1187 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  /\  a  e.  X )  ->  (
a  e.  w  <->  ( F `  a )  e.  ( F " w ) ) )
1110adantrr 716 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a  e.  w  <->  ( F `  a )  e.  ( F " w ) ) )
121kqfvima 19325 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J  /\  b  e.  X )  ->  (
b  e.  w  <->  ( F `  b )  e.  ( F " w ) ) )
13123expa 1187 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  /\  b  e.  X )  ->  (
b  e.  w  <->  ( F `  b )  e.  ( F " w ) ) )
1413adantrl 715 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( b  e.  w  <->  ( F `  b )  e.  ( F " w ) ) )
1511, 14bibi12d 321 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( (
a  e.  w  <->  b  e.  w )  <->  ( ( F `  a )  e.  ( F " w
)  <->  ( F `  b )  e.  ( F " w ) ) ) )
1615an32s 802 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  /\  w  e.  J )  ->  (
( a  e.  w  <->  b  e.  w )  <->  ( ( F `  a )  e.  ( F " w
)  <->  ( F `  b )  e.  ( F " w ) ) ) )
178, 16sylibrd 234 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  /\  w  e.  J )  ->  ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <->  ( F `  b )  e.  z )  ->  ( a  e.  w  <->  b  e.  w
) ) )
1817ralrimdva 2827 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( A. z  e.  (KQ `  J
) ( ( F `
 a )  e.  z  <->  ( F `  b )  e.  z )  ->  A. w  e.  J  ( a  e.  w  <->  b  e.  w
) ) )
191kqfeq 19319 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  a  e.  X  /\  b  e.  X )  ->  (
( F `  a
)  =  ( F `
 b )  <->  A. y  e.  J  ( a  e.  y  <->  b  e.  y ) ) )
20193expb 1188 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F `  a )  =  ( F `  b )  <->  A. y  e.  J  ( a  e.  y  <->  b  e.  y ) ) )
21 elequ2 1761 . . . . . . . 8  |-  ( y  =  w  ->  (
a  e.  y  <->  a  e.  w ) )
22 elequ2 1761 . . . . . . . 8  |-  ( y  =  w  ->  (
b  e.  y  <->  b  e.  w ) )
2321, 22bibi12d 321 . . . . . . 7  |-  ( y  =  w  ->  (
( a  e.  y  <-> 
b  e.  y )  <-> 
( a  e.  w  <->  b  e.  w ) ) )
2423cbvralv 2968 . . . . . 6  |-  ( A. y  e.  J  (
a  e.  y  <->  b  e.  y )  <->  A. w  e.  J  ( a  e.  w  <->  b  e.  w
) )
2520, 24syl6bb 261 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F `  a )  =  ( F `  b )  <->  A. w  e.  J  ( a  e.  w  <->  b  e.  w
) ) )
2618, 25sylibrd 234 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( A. z  e.  (KQ `  J
) ( ( F `
 a )  e.  z  <->  ( F `  b )  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) )
2726ralrimivva 2829 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  A. a  e.  X  A. b  e.  X  ( A. z  e.  (KQ `  J
) ( ( F `
 a )  e.  z  <->  ( F `  b )  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) )
281kqffn 19320 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
29 eleq1 2503 . . . . . . . . . 10  |-  ( u  =  ( F `  a )  ->  (
u  e.  z  <->  ( F `  a )  e.  z ) )
3029bibi1d 319 . . . . . . . . 9  |-  ( u  =  ( F `  a )  ->  (
( u  e.  z  <-> 
v  e.  z )  <-> 
( ( F `  a )  e.  z  <-> 
v  e.  z ) ) )
3130ralbidv 2756 . . . . . . . 8  |-  ( u  =  ( F `  a )  ->  ( A. z  e.  (KQ `  J ) ( u  e.  z  <->  v  e.  z )  <->  A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z ) ) )
32 eqeq1 2449 . . . . . . . 8  |-  ( u  =  ( F `  a )  ->  (
u  =  v  <->  ( F `  a )  =  v ) )
3331, 32imbi12d 320 . . . . . . 7  |-  ( u  =  ( F `  a )  ->  (
( A. z  e.  (KQ `  J ) ( u  e.  z  <-> 
v  e.  z )  ->  u  =  v )  <->  ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z )  ->  ( F `  a )  =  v ) ) )
3433ralbidv 2756 . . . . . 6  |-  ( u  =  ( F `  a )  ->  ( A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( u  e.  z  <-> 
v  e.  z )  ->  u  =  v )  <->  A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z )  ->  ( F `  a )  =  v ) ) )
3534ralrn 5867 . . . . 5  |-  ( F  Fn  X  ->  ( A. u  e.  ran  F A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( u  e.  z  <-> 
v  e.  z )  ->  u  =  v )  <->  A. a  e.  X  A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z )  ->  ( F `  a )  =  v ) ) )
36 eleq1 2503 . . . . . . . . . 10  |-  ( v  =  ( F `  b )  ->  (
v  e.  z  <->  ( F `  b )  e.  z ) )
3736bibi2d 318 . . . . . . . . 9  |-  ( v  =  ( F `  b )  ->  (
( ( F `  a )  e.  z  <-> 
v  e.  z )  <-> 
( ( F `  a )  e.  z  <-> 
( F `  b
)  e.  z ) ) )
3837ralbidv 2756 . . . . . . . 8  |-  ( v  =  ( F `  b )  ->  ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <->  v  e.  z )  <->  A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
( F `  b
)  e.  z ) ) )
39 eqeq2 2452 . . . . . . . 8  |-  ( v  =  ( F `  b )  ->  (
( F `  a
)  =  v  <->  ( F `  a )  =  ( F `  b ) ) )
4038, 39imbi12d 320 . . . . . . 7  |-  ( v  =  ( F `  b )  ->  (
( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z )  ->  ( F `  a )  =  v )  <->  ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
( F `  b
)  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) ) )
4140ralrn 5867 . . . . . 6  |-  ( F  Fn  X  ->  ( A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z )  ->  ( F `  a )  =  v )  <->  A. b  e.  X  ( A. z  e.  (KQ
`  J ) ( ( F `  a
)  e.  z  <->  ( F `  b )  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) ) )
4241ralbidv 2756 . . . . 5  |-  ( F  Fn  X  ->  ( A. a  e.  X  A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( ( F `  a )  e.  z  <-> 
v  e.  z )  ->  ( F `  a )  =  v )  <->  A. a  e.  X  A. b  e.  X  ( A. z  e.  (KQ
`  J ) ( ( F `  a
)  e.  z  <->  ( F `  b )  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) ) )
4335, 42bitrd 253 . . . 4  |-  ( F  Fn  X  ->  ( A. u  e.  ran  F A. v  e.  ran  F ( A. z  e.  (KQ `  J ) ( u  e.  z  <-> 
v  e.  z )  ->  u  =  v )  <->  A. a  e.  X  A. b  e.  X  ( A. z  e.  (KQ
`  J ) ( ( F `  a
)  e.  z  <->  ( F `  b )  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) ) )
4428, 43syl 16 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. u  e.  ran  F A. v  e.  ran  F ( A. z  e.  (KQ
`  J ) ( u  e.  z  <->  v  e.  z )  ->  u  =  v )  <->  A. a  e.  X  A. b  e.  X  ( A. z  e.  (KQ `  J
) ( ( F `
 a )  e.  z  <->  ( F `  b )  e.  z )  ->  ( F `  a )  =  ( F `  b ) ) ) )
4527, 44mpbird 232 . 2  |-  ( J  e.  (TopOn `  X
)  ->  A. u  e.  ran  F A. v  e.  ran  F ( A. z  e.  (KQ `  J
) ( u  e.  z  <->  v  e.  z )  ->  u  =  v ) )
461kqtopon 19322 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
47 ist0-2 18970 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ( (KQ `  J )  e.  Kol2  <->  A. u  e.  ran  F A. v  e.  ran  F ( A. z  e.  (KQ
`  J ) ( u  e.  z  <->  v  e.  z )  ->  u  =  v ) ) )
4846, 47syl 16 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( (KQ `  J )  e.  Kol2  <->  A. u  e.  ran  F A. v  e.  ran  F ( A. z  e.  (KQ
`  J ) ( u  e.  z  <->  v  e.  z )  ->  u  =  v ) ) )
4945, 48mpbird 232 1  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  Kol2 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736   {crab 2740    e. cmpt 4371   ran crn 4862   "cima 4864    Fn wfn 5434   ` cfv 5439  TopOnctopon 18521   Kol2ct0 18932  KQckq 19288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-qtop 14466  df-top 18525  df-topon 18528  df-t0 18939  df-kq 19289
This theorem is referenced by:  kqt0  19341  t0kq  19413
  Copyright terms: Public domain W3C validator