MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Unicode version

Theorem kqreglem1 17726
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqreglem1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Reg )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqreglem1
Dummy variables  m  w  z  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqtopon 17712 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
32adantr 452 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  (TopOn `  ran  F ) )
4 topontop 16946 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  (KQ `  J
)  e.  Top )
53, 4syl 16 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Top )
6 toponss 16949 . . . . . . . 8  |-  ( ( (KQ `  J )  e.  (TopOn `  ran  F )  /\  a  e.  (KQ `  J ) )  ->  a  C_  ran  F )
73, 6sylan 458 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  ->  a  C_  ran  F )
87sselda 3308 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  b  e.  ran  F )
91kqffn 17710 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
109ad3antrrr 711 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  F  Fn  X )
11 fvelrnb 5733 . . . . . . 7  |-  ( F  Fn  X  ->  (
b  e.  ran  F  <->  E. z  e.  X  ( F `  z )  =  b ) )
1210, 11syl 16 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  ( b  e.  ran  F  <->  E. z  e.  X  ( F `  z )  =  b ) )
138, 12mpbid 202 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  E. z  e.  X  ( F `  z )  =  b )
14 simpllr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  J  e.  Reg )
151kqid 17713 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
1615ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
17 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  -> 
a  e.  (KQ `  J ) )
18 cnima 17283 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  a  e.  (KQ `  J ) )  ->  ( `' F " a )  e.  J )
1916, 17, 18syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  -> 
( `' F "
a )  e.  J
)
209adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  F  Fn  X )
2120adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  ->  F  Fn  X )
22 elpreima 5809 . . . . . . . . . . . . . . 15  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " a )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  a ) ) )
2321, 22syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  ->  ( z  e.  ( `' F "
a )  <->  ( z  e.  X  /\  ( F `  z )  e.  a ) ) )
2423biimpar 472 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  -> 
z  e.  ( `' F " a ) )
25 regsep 17352 . . . . . . . . . . . . 13  |-  ( ( J  e.  Reg  /\  ( `' F " a )  e.  J  /\  z  e.  ( `' F "
a ) )  ->  E. w  e.  J  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) )
2614, 19, 24, 25syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  E. w  e.  J  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) )
27 simp-4l 743 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  w  e.  J )
291kqopn 17719 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  ->  ( F " w )  e.  (KQ `  J ) )
3027, 28, 29syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " w )  e.  (KQ
`  J ) )
31 simprrl 741 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  z  e.  w )
32 simplrl 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  z  e.  X )
331kqfvima 17715 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J  /\  z  e.  X )  ->  (
z  e.  w  <->  ( F `  z )  e.  ( F " w ) ) )
3427, 28, 32, 33syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( z  e.  w  <->  ( F `  z )  e.  ( F " w ) ) )
3531, 34mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F `  z )  e.  ( F " w ) )
36 topontop 16946 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3727, 36syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  J  e.  Top )
38 elssuni 4003 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  J  ->  w  C_ 
U. J )
3938ad2antrl 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  w  C_  U. J
)
40 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
4140clscld 17066 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  w  C_  U. J )  ->  ( ( cls `  J ) `  w
)  e.  ( Clsd `  J ) )
4237, 39, 41syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  J ) `  w )  e.  (
Clsd `  J )
)
431kqcld 17720 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  (
( cls `  J
) `  w )  e.  ( Clsd `  J
) )  ->  ( F " ( ( cls `  J ) `  w
) )  e.  (
Clsd `  (KQ `  J
) ) )
4427, 42, 43syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " ( ( cls `  J
) `  w )
)  e.  ( Clsd `  (KQ `  J ) ) )
4540sscls 17075 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  w  C_  U. J )  ->  w  C_  (
( cls `  J
) `  w )
)
4637, 39, 45syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  w  C_  (
( cls `  J
) `  w )
)
47 imass2 5199 . . . . . . . . . . . . . . . 16  |-  ( w 
C_  ( ( cls `  J ) `  w
)  ->  ( F " w )  C_  ( F " ( ( cls `  J ) `  w
) ) )
4846, 47syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " w )  C_  ( F " ( ( cls `  J ) `  w
) ) )
49 eqid 2404 . . . . . . . . . . . . . . . 16  |-  U. (KQ `  J )  =  U. (KQ `  J )
5049clsss2 17091 . . . . . . . . . . . . . . 15  |-  ( ( ( F " (
( cls `  J
) `  w )
)  e.  ( Clsd `  (KQ `  J ) )  /\  ( F
" w )  C_  ( F " ( ( cls `  J ) `
 w ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  ( F "
( ( cls `  J
) `  w )
) )
5144, 48, 50syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  ( F "
( ( cls `  J
) `  w )
) )
5220ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  F  Fn  X )
53 fnfun 5501 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  X  ->  Fun  F )
5452, 53syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  Fun  F )
55 simprrr 742 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  J ) `  w )  C_  ( `' F " a ) )
56 funimass2 5486 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  (
( cls `  J
) `  w )  C_  ( `' F "
a ) )  -> 
( F " (
( cls `  J
) `  w )
)  C_  a )
5754, 55, 56syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " ( ( cls `  J
) `  w )
)  C_  a )
5851, 57sstrd 3318 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  a )
59 eleq2 2465 . . . . . . . . . . . . . . 15  |-  ( m  =  ( F "
w )  ->  (
( F `  z
)  e.  m  <->  ( F `  z )  e.  ( F " w ) ) )
60 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( F "
w )  ->  (
( cls `  (KQ `  J ) ) `  m )  =  ( ( cls `  (KQ `  J ) ) `  ( F " w ) ) )
6160sseq1d 3335 . . . . . . . . . . . . . . 15  |-  ( m  =  ( F "
w )  ->  (
( ( cls `  (KQ `  J ) ) `  m )  C_  a  <->  ( ( cls `  (KQ `  J ) ) `  ( F " w ) )  C_  a )
)
6259, 61anbi12d 692 . . . . . . . . . . . . . 14  |-  ( m  =  ( F "
w )  ->  (
( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
)  <->  ( ( F `
 z )  e.  ( F " w
)  /\  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  a ) ) )
6362rspcev 3012 . . . . . . . . . . . . 13  |-  ( ( ( F " w
)  e.  (KQ `  J )  /\  (
( F `  z
)  e.  ( F
" w )  /\  ( ( cls `  (KQ `  J ) ) `  ( F " w ) )  C_  a )
)  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
6430, 35, 58, 63syl12anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
6526, 64rexlimddv 2794 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) )
6665expr 599 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  z  e.  X
)  ->  ( ( F `  z )  e.  a  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
67 eleq1 2464 . . . . . . . . . . 11  |-  ( ( F `  z )  =  b  ->  (
( F `  z
)  e.  a  <->  b  e.  a ) )
68 eleq1 2464 . . . . . . . . . . . . 13  |-  ( ( F `  z )  =  b  ->  (
( F `  z
)  e.  m  <->  b  e.  m ) )
6968anbi1d 686 . . . . . . . . . . . 12  |-  ( ( F `  z )  =  b  ->  (
( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
)  <->  ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7069rexbidv 2687 . . . . . . . . . . 11  |-  ( ( F `  z )  =  b  ->  ( E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
)  <->  E. m  e.  (KQ
`  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7167, 70imbi12d 312 . . . . . . . . . 10  |-  ( ( F `  z )  =  b  ->  (
( ( F `  z )  e.  a  ->  E. m  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )  <->  ( b  e.  a  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) ) )
7266, 71syl5ibcom 212 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  z  e.  X
)  ->  ( ( F `  z )  =  b  ->  ( b  e.  a  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) ) )
7372com23 74 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  z  e.  X
)  ->  ( b  e.  a  ->  ( ( F `  z )  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) ) )
7473imp 419 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  z  e.  X )  /\  b  e.  a )  ->  (
( F `  z
)  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7574an32s 780 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  b  e.  a )  /\  z  e.  X )  ->  (
( F `  z
)  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7675rexlimdva 2790 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  ( E. z  e.  X  ( F `  z )  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7713, 76mpd 15 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
7877anasss 629 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
a  e.  (KQ `  J )  /\  b  e.  a ) )  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) )
7978ralrimivva 2758 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. a  e.  (KQ `  J ) A. b  e.  a  E. m  e.  (KQ
`  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
80 isreg 17350 . 2  |-  ( (KQ
`  J )  e. 
Reg 
<->  ( (KQ `  J
)  e.  Top  /\  A. a  e.  (KQ `  J ) A. b  e.  a  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
815, 79, 80sylanbrc 646 1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Reg )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670    C_ wss 3280   U.cuni 3975    e. cmpt 4226   `'ccnv 4836   ran crn 4838   "cima 4840   Fun wfun 5407    Fn wfn 5408   ` cfv 5413  (class class class)co 6040   Topctop 16913  TopOnctopon 16914   Clsdccld 17035   clsccl 17037    Cn ccn 17242   Regcreg 17327  KQckq 17678
This theorem is referenced by:  kqreg  17736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-map 6979  df-qtop 13688  df-top 16918  df-topon 16921  df-cld 17038  df-cls 17040  df-cn 17245  df-reg 17334  df-kq 17679
  Copyright terms: Public domain W3C validator