MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Structured version   Unicode version

Theorem kqreglem1 20755
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqreglem1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Reg )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqreglem1
Dummy variables  m  w  z  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqtopon 20741 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
32adantr 466 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  (TopOn `  ran  F ) )
4 topontop 19940 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  (KQ `  J
)  e.  Top )
53, 4syl 17 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Top )
6 toponss 19943 . . . . . . . 8  |-  ( ( (KQ `  J )  e.  (TopOn `  ran  F )  /\  a  e.  (KQ `  J ) )  ->  a  C_  ran  F )
73, 6sylan 473 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  ->  a  C_  ran  F )
87sselda 3464 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  b  e.  ran  F )
91kqffn 20739 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
109ad3antrrr 734 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  F  Fn  X )
11 fvelrnb 5929 . . . . . . 7  |-  ( F  Fn  X  ->  (
b  e.  ran  F  <->  E. z  e.  X  ( F `  z )  =  b ) )
1210, 11syl 17 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  ( b  e.  ran  F  <->  E. z  e.  X  ( F `  z )  =  b ) )
138, 12mpbid 213 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  E. z  e.  X  ( F `  z )  =  b )
14 simpllr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  J  e.  Reg )
151kqid 20742 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
1615ad3antrrr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
17 simplr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  -> 
a  e.  (KQ `  J ) )
18 cnima 20280 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  a  e.  (KQ `  J ) )  ->  ( `' F " a )  e.  J )
1916, 17, 18syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  -> 
( `' F "
a )  e.  J
)
209adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  F  Fn  X )
2120adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  ->  F  Fn  X )
22 elpreima 6018 . . . . . . . . . . . . . . 15  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " a )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  a ) ) )
2321, 22syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  ->  ( z  e.  ( `' F "
a )  <->  ( z  e.  X  /\  ( F `  z )  e.  a ) ) )
2423biimpar 487 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  -> 
z  e.  ( `' F " a ) )
25 regsep 20349 . . . . . . . . . . . . 13  |-  ( ( J  e.  Reg  /\  ( `' F " a )  e.  J  /\  z  e.  ( `' F "
a ) )  ->  E. w  e.  J  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) )
2614, 19, 24, 25syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  E. w  e.  J  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) )
27 simp-4l 774 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  w  e.  J )
291kqopn 20748 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J )  ->  ( F " w )  e.  (KQ `  J ) )
3027, 28, 29syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " w )  e.  (KQ
`  J ) )
31 simprrl 772 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  z  e.  w )
32 simplrl 768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  z  e.  X )
331kqfvima 20744 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  J  /\  z  e.  X )  ->  (
z  e.  w  <->  ( F `  z )  e.  ( F " w ) ) )
3427, 28, 32, 33syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( z  e.  w  <->  ( F `  z )  e.  ( F " w ) ) )
3531, 34mpbid 213 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F `  z )  e.  ( F " w ) )
36 topontop 19940 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3727, 36syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  J  e.  Top )
38 elssuni 4248 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  J  ->  w  C_ 
U. J )
3938ad2antrl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  w  C_  U. J
)
40 eqid 2422 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
4140clscld 20061 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  w  C_  U. J )  ->  ( ( cls `  J ) `  w
)  e.  ( Clsd `  J ) )
4237, 39, 41syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  J ) `  w )  e.  (
Clsd `  J )
)
431kqcld 20749 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  (
( cls `  J
) `  w )  e.  ( Clsd `  J
) )  ->  ( F " ( ( cls `  J ) `  w
) )  e.  (
Clsd `  (KQ `  J
) ) )
4427, 42, 43syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " ( ( cls `  J
) `  w )
)  e.  ( Clsd `  (KQ `  J ) ) )
4540sscls 20070 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  w  C_  U. J )  ->  w  C_  (
( cls `  J
) `  w )
)
4637, 39, 45syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  w  C_  (
( cls `  J
) `  w )
)
47 imass2 5223 . . . . . . . . . . . . . . . 16  |-  ( w 
C_  ( ( cls `  J ) `  w
)  ->  ( F " w )  C_  ( F " ( ( cls `  J ) `  w
) ) )
4846, 47syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " w )  C_  ( F " ( ( cls `  J ) `  w
) ) )
49 eqid 2422 . . . . . . . . . . . . . . . 16  |-  U. (KQ `  J )  =  U. (KQ `  J )
5049clsss2 20087 . . . . . . . . . . . . . . 15  |-  ( ( ( F " (
( cls `  J
) `  w )
)  e.  ( Clsd `  (KQ `  J ) )  /\  ( F
" w )  C_  ( F " ( ( cls `  J ) `
 w ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  ( F "
( ( cls `  J
) `  w )
) )
5144, 48, 50syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  ( F "
( ( cls `  J
) `  w )
) )
5220ad3antrrr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  F  Fn  X )
53 fnfun 5691 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  X  ->  Fun  F )
5452, 53syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  Fun  F )
55 simprrr 773 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  J ) `  w )  C_  ( `' F " a ) )
56 funimass2 5675 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  (
( cls `  J
) `  w )  C_  ( `' F "
a ) )  -> 
( F " (
( cls `  J
) `  w )
)  C_  a )
5754, 55, 56syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( F " ( ( cls `  J
) `  w )
)  C_  a )
5851, 57sstrd 3474 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  a )
59 eleq2 2496 . . . . . . . . . . . . . . 15  |-  ( m  =  ( F "
w )  ->  (
( F `  z
)  e.  m  <->  ( F `  z )  e.  ( F " w ) ) )
60 fveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( F "
w )  ->  (
( cls `  (KQ `  J ) ) `  m )  =  ( ( cls `  (KQ `  J ) ) `  ( F " w ) ) )
6160sseq1d 3491 . . . . . . . . . . . . . . 15  |-  ( m  =  ( F "
w )  ->  (
( ( cls `  (KQ `  J ) ) `  m )  C_  a  <->  ( ( cls `  (KQ `  J ) ) `  ( F " w ) )  C_  a )
)
6259, 61anbi12d 715 . . . . . . . . . . . . . 14  |-  ( m  =  ( F "
w )  ->  (
( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
)  <->  ( ( F `
 z )  e.  ( F " w
)  /\  ( ( cls `  (KQ `  J
) ) `  ( F " w ) ) 
C_  a ) ) )
6362rspcev 3182 . . . . . . . . . . . . 13  |-  ( ( ( F " w
)  e.  (KQ `  J )  /\  (
( F `  z
)  e.  ( F
" w )  /\  ( ( cls `  (KQ `  J ) ) `  ( F " w ) )  C_  a )
)  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
6430, 35, 58, 63syl12anc 1262 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  ( z  e.  X  /\  ( F `  z )  e.  a ) )  /\  ( w  e.  J  /\  ( z  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( `' F "
a ) ) ) )  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
6526, 64rexlimddv 2918 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  ( z  e.  X  /\  ( F `
 z )  e.  a ) )  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) )
6665expr 618 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  z  e.  X
)  ->  ( ( F `  z )  e.  a  ->  E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
67 eleq1 2495 . . . . . . . . . . 11  |-  ( ( F `  z )  =  b  ->  (
( F `  z
)  e.  a  <->  b  e.  a ) )
68 eleq1 2495 . . . . . . . . . . . . 13  |-  ( ( F `  z )  =  b  ->  (
( F `  z
)  e.  m  <->  b  e.  m ) )
6968anbi1d 709 . . . . . . . . . . . 12  |-  ( ( F `  z )  =  b  ->  (
( ( F `  z )  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
)  <->  ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7069rexbidv 2936 . . . . . . . . . . 11  |-  ( ( F `  z )  =  b  ->  ( E. m  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
)  <->  E. m  e.  (KQ
`  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7167, 70imbi12d 321 . . . . . . . . . 10  |-  ( ( F `  z )  =  b  ->  (
( ( F `  z )  e.  a  ->  E. m  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )  <->  ( b  e.  a  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) ) )
7266, 71syl5ibcom 223 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  z  e.  X
)  ->  ( ( F `  z )  =  b  ->  ( b  e.  a  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) ) )
7372com23 81 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  z  e.  X
)  ->  ( b  e.  a  ->  ( ( F `  z )  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) ) )
7473imp 430 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  z  e.  X )  /\  b  e.  a )  ->  (
( F `  z
)  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7574an32s 811 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  J  e.  Reg )  /\  a  e.  (KQ `  J ) )  /\  b  e.  a )  /\  z  e.  X )  ->  (
( F `  z
)  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7675rexlimdva 2914 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  ( E. z  e.  X  ( F `  z )  =  b  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
7713, 76mpd 15 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  a  e.  (KQ
`  J ) )  /\  b  e.  a )  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
7877anasss 651 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
a  e.  (KQ `  J )  /\  b  e.  a ) )  ->  E. m  e.  (KQ `  J ) ( b  e.  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  a
) )
7978ralrimivva 2843 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. a  e.  (KQ `  J ) A. b  e.  a  E. m  e.  (KQ
`  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) )
80 isreg 20347 . 2  |-  ( (KQ
`  J )  e. 
Reg 
<->  ( (KQ `  J
)  e.  Top  /\  A. a  e.  (KQ `  J ) A. b  e.  a  E. m  e.  (KQ `  J ) ( b  e.  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  a
) ) )
815, 79, 80sylanbrc 668 1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Reg )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771   E.wrex 2772   {crab 2775    C_ wss 3436   U.cuni 4219    |-> cmpt 4482   `'ccnv 4852   ran crn 4854   "cima 4856   Fun wfun 5595    Fn wfn 5596   ` cfv 5601  (class class class)co 6306   Topctop 19916  TopOnctopon 19917   Clsdccld 20030   clsccl 20032    Cn ccn 20239   Regcreg 20324  KQckq 20707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-map 7486  df-qtop 15406  df-top 19920  df-topon 19922  df-cld 20033  df-cls 20035  df-cn 20242  df-reg 20331  df-kq 20708
This theorem is referenced by:  kqreg  20765
  Copyright terms: Public domain W3C validator