MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem2 Structured version   Unicode version

Theorem kqnrmlem2 20371
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqnrmlem2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  J  e.  Nrm )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqnrmlem2
Dummy variables  m  w  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 19554 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 465 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  J  e.  Top )
3 simplr 755 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
(KQ `  J )  e.  Nrm )
4 simpll 753 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  J  e.  (TopOn `  X
) )
5 simprl 756 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
z  e.  J )
6 kqval.2 . . . . . . 7  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
76kqopn 20361 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  ( F " z )  e.  (KQ `  J ) )
84, 5, 7syl2anc 661 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
( F " z
)  e.  (KQ `  J ) )
9 inss1 3714 . . . . . . 7  |-  ( (
Clsd `  J )  i^i  ~P z )  C_  ( Clsd `  J )
10 simprr 757 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  w  e.  ( ( Clsd `  J )  i^i 
~P z ) )
119, 10sseldi 3497 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  w  e.  ( Clsd `  J ) )
126kqcld 20362 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  ( Clsd `  J
) )  ->  ( F " w )  e.  ( Clsd `  (KQ `  J ) ) )
134, 11, 12syl2anc 661 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
( F " w
)  e.  ( Clsd `  (KQ `  J ) ) )
14 inss2 3715 . . . . . . 7  |-  ( (
Clsd `  J )  i^i  ~P z )  C_  ~P z
1514, 10sseldi 3497 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  w  e.  ~P z
)
16 elpwi 4024 . . . . . 6  |-  ( w  e.  ~P z  ->  w  C_  z )
17 imass2 5382 . . . . . 6  |-  ( w 
C_  z  ->  ( F " w )  C_  ( F " z ) )
1815, 16, 173syl 20 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
( F " w
)  C_  ( F " z ) )
19 nrmsep3 19983 . . . . 5  |-  ( ( (KQ `  J )  e.  Nrm  /\  (
( F " z
)  e.  (KQ `  J )  /\  ( F " w )  e.  ( Clsd `  (KQ `  J ) )  /\  ( F " w ) 
C_  ( F "
z ) ) )  ->  E. m  e.  (KQ
`  J ) ( ( F " w
)  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  ( F " z ) ) )
203, 8, 13, 18, 19syl13anc 1230 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  E. m  e.  (KQ `  J ) ( ( F " w ) 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  ( F " z ) ) )
21 simplll 759 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  J  e.  (TopOn `  X ) )
226kqid 20355 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
2321, 22syl 16 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
24 simprl 756 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  m  e.  (KQ `  J ) )
25 cnima 19893 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  m  e.  (KQ `  J ) )  ->  ( `' F " m )  e.  J )
2623, 24, 25syl2anc 661 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " m )  e.  J )
27 simprrl 765 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( F " w )  C_  m
)
286kqffn 20352 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
29 fnfun 5684 . . . . . . . 8  |-  ( F  Fn  X  ->  Fun  F )
3021, 28, 293syl 20 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  Fun  F )
3111adantr 465 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  e.  ( Clsd `  J )
)
32 eqid 2457 . . . . . . . . . 10  |-  U. J  =  U. J
3332cldss 19657 . . . . . . . . 9  |-  ( w  e.  ( Clsd `  J
)  ->  w  C_  U. J
)
3431, 33syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  C_  U. J
)
35 fndm 5686 . . . . . . . . . 10  |-  ( F  Fn  X  ->  dom  F  =  X )
3621, 28, 353syl 20 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  dom  F  =  X )
37 toponuni 19555 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3821, 37syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  X  =  U. J )
3936, 38eqtrd 2498 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  dom  F  = 
U. J )
4034, 39sseqtr4d 3536 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  C_  dom  F )
41 funimass3 6004 . . . . . . 7  |-  ( ( Fun  F  /\  w  C_ 
dom  F )  -> 
( ( F "
w )  C_  m  <->  w 
C_  ( `' F " m ) ) )
4230, 40, 41syl2anc 661 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( F " w )  C_  m 
<->  w  C_  ( `' F " m ) ) )
4327, 42mpbid 210 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  C_  ( `' F " m ) )
446kqtopon 20354 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
45 topontop 19554 . . . . . . . . . 10  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  (KQ `  J
)  e.  Top )
4621, 44, 453syl 20 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  (KQ `  J
)  e.  Top )
47 elssuni 4281 . . . . . . . . . 10  |-  ( m  e.  (KQ `  J
)  ->  m  C_  U. (KQ `  J ) )
4847ad2antrl 727 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  m  C_  U. (KQ `  J ) )
49 eqid 2457 . . . . . . . . . 10  |-  U. (KQ `  J )  =  U. (KQ `  J )
5049clscld 19675 . . . . . . . . 9  |-  ( ( (KQ `  J )  e.  Top  /\  m  C_ 
U. (KQ `  J
) )  ->  (
( cls `  (KQ `  J ) ) `  m )  e.  (
Clsd `  (KQ `  J
) ) )
5146, 48, 50syl2anc 661 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  m
)  e.  ( Clsd `  (KQ `  J ) ) )
52 cnclima 19896 . . . . . . . 8  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  (
( cls `  (KQ `  J ) ) `  m )  e.  (
Clsd `  (KQ `  J
) ) )  -> 
( `' F "
( ( cls `  (KQ `  J ) ) `  m ) )  e.  ( Clsd `  J
) )
5323, 51, 52syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) )  e.  ( Clsd `  J ) )
5449sscls 19684 . . . . . . . . 9  |-  ( ( (KQ `  J )  e.  Top  /\  m  C_ 
U. (KQ `  J
) )  ->  m  C_  ( ( cls `  (KQ `  J ) ) `  m ) )
5546, 48, 54syl2anc 661 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  m  C_  (
( cls `  (KQ `  J ) ) `  m ) )
56 imass2 5382 . . . . . . . 8  |-  ( m 
C_  ( ( cls `  (KQ `  J ) ) `  m )  ->  ( `' F " m )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
5755, 56syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " m )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
5832clsss2 19700 . . . . . . 7  |-  ( ( ( `' F "
( ( cls `  (KQ `  J ) ) `  m ) )  e.  ( Clsd `  J
)  /\  ( `' F " m )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )  ->  ( ( cls `  J ) `  ( `' F " m ) )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
5953, 57, 58syl2anc 661 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  J ) `  ( `' F " m ) )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
60 simprrr 766 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  m
)  C_  ( F " z ) )
61 imass2 5382 . . . . . . . 8  |-  ( ( ( cls `  (KQ `  J ) ) `  m )  C_  ( F " z )  -> 
( `' F "
( ( cls `  (KQ `  J ) ) `  m ) )  C_  ( `' F " ( F
" z ) ) )
6260, 61syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) )  C_  ( `' F " ( F "
z ) ) )
635adantr 465 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  z  e.  J )
646kqsat 20358 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  ( `' F " ( F
" z ) )  =  z )
6521, 63, 64syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( F "
z ) )  =  z )
6662, 65sseqtrd 3535 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) )  C_  z )
6759, 66sstrd 3509 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  J ) `  ( `' F " m ) )  C_  z )
68 sseq2 3521 . . . . . . 7  |-  ( u  =  ( `' F " m )  ->  (
w  C_  u  <->  w  C_  ( `' F " m ) ) )
69 fveq2 5872 . . . . . . . 8  |-  ( u  =  ( `' F " m )  ->  (
( cls `  J
) `  u )  =  ( ( cls `  J ) `  ( `' F " m ) ) )
7069sseq1d 3526 . . . . . . 7  |-  ( u  =  ( `' F " m )  ->  (
( ( cls `  J
) `  u )  C_  z  <->  ( ( cls `  J ) `  ( `' F " m ) )  C_  z )
)
7168, 70anbi12d 710 . . . . . 6  |-  ( u  =  ( `' F " m )  ->  (
( w  C_  u  /\  ( ( cls `  J
) `  u )  C_  z )  <->  ( w  C_  ( `' F "
m )  /\  (
( cls `  J
) `  ( `' F " m ) ) 
C_  z ) ) )
7271rspcev 3210 . . . . 5  |-  ( ( ( `' F "
m )  e.  J  /\  ( w  C_  ( `' F " m )  /\  ( ( cls `  J ) `  ( `' F " m ) )  C_  z )
)  ->  E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J ) `
 u )  C_  z ) )
7326, 43, 67, 72syl12anc 1226 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J ) `
 u )  C_  z ) )
7420, 73rexlimddv 2953 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J
) `  u )  C_  z ) )
7574ralrimivva 2878 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  A. z  e.  J  A. w  e.  (
( Clsd `  J )  i^i  ~P z ) E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J
) `  u )  C_  z ) )
76 isnrm 19963 . 2  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. z  e.  J  A. w  e.  ( ( Clsd `  J
)  i^i  ~P z
) E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J ) `  u
)  C_  z )
) )
772, 75, 76sylanbrc 664 1  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  J  e.  Nrm )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   U.cuni 4251    |-> cmpt 4515   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011   Fun wfun 5588    Fn wfn 5589   ` cfv 5594  (class class class)co 6296   Topctop 19521  TopOnctopon 19522   Clsdccld 19644   clsccl 19646    Cn ccn 19852   Nrmcnrm 19938  KQckq 20320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-map 7440  df-qtop 14924  df-top 19526  df-topon 19529  df-cld 19647  df-cls 19649  df-cn 19855  df-nrm 19945  df-kq 20321
This theorem is referenced by:  kqnrm  20379
  Copyright terms: Public domain W3C validator