MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqffn Structured version   Unicode version

Theorem kqffn 19956
Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqffn  |-  ( J  e.  V  ->  F  Fn  X )
Distinct variable groups:    x, y, J    x, X, y    x, V
Allowed substitution hints:    F( x, y)    V( y)

Proof of Theorem kqffn
StepHypRef Expression
1 ssrab2 3580 . . . . 5  |-  { y  e.  J  |  x  e.  y }  C_  J
2 elpw2g 4605 . . . . 5  |-  ( J  e.  V  ->  ( { y  e.  J  |  x  e.  y }  e.  ~P J  <->  { y  e.  J  |  x  e.  y }  C_  J ) )
31, 2mpbiri 233 . . . 4  |-  ( J  e.  V  ->  { y  e.  J  |  x  e.  y }  e.  ~P J )
43adantr 465 . . 3  |-  ( ( J  e.  V  /\  x  e.  X )  ->  { y  e.  J  |  x  e.  y }  e.  ~P J
)
5 kqval.2 . . 3  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
64, 5fmptd 6038 . 2  |-  ( J  e.  V  ->  F : X --> ~P J )
7 ffn 5724 . 2  |-  ( F : X --> ~P J  ->  F  Fn  X )
86, 7syl 16 1  |-  ( J  e.  V  ->  F  Fn  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   {crab 2813    C_ wss 3471   ~Pcpw 4005    |-> cmpt 4500    Fn wfn 5576   -->wf 5577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-fv 5589
This theorem is referenced by:  kqtopon  19958  kqid  19959  ist0-4  19960  kqfvima  19961  kqsat  19962  kqdisj  19963  kqcldsat  19964  kqopn  19965  kqcld  19966  kqt0lem  19967  isr0  19968  r0cld  19969  regr1lem2  19971  kqreglem1  19972  kqreglem2  19973  kqnrmlem1  19974  kqnrmlem2  19975
  Copyright terms: Public domain W3C validator