MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqdisj Structured version   Visualization version   Unicode version

Theorem kqdisj 20795
Description: A version of imain 5680 for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqdisj  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  =  (/) )
Distinct variable groups:    x, y, A    x, J, y    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqdisj
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadmres 5345 . . . . 5  |-  ( F
" dom  ( F  |`  ( A  \  U
) ) )  =  ( F " ( A  \  U ) )
2 dmres 5143 . . . . . . 7  |-  dom  ( F  |`  ( A  \  U ) )  =  ( ( A  \  U )  i^i  dom  F )
3 kqval.2 . . . . . . . . . . 11  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
43kqffn 20788 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
54adantr 471 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  F  Fn  X )
6 fndm 5696 . . . . . . . . 9  |-  ( F  Fn  X  ->  dom  F  =  X )
75, 6syl 17 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  dom  F  =  X )
87ineq2d 3645 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( A  \  U
)  i^i  dom  F )  =  ( ( A 
\  U )  i^i 
X ) )
92, 8syl5eq 2507 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  dom  ( F  |`  ( A 
\  U ) )  =  ( ( A 
\  U )  i^i 
X ) )
109imaeq2d 5186 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " dom  ( F  |`  ( A  \  U
) ) )  =  ( F " (
( A  \  U
)  i^i  X )
) )
111, 10syl5eqr 2509 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " ( A  \  U ) )  =  ( F " (
( A  \  U
)  i^i  X )
) )
12 indif1 3698 . . . . . 6  |-  ( ( A  \  U )  i^i  X )  =  ( ( A  i^i  X )  \  U )
13 inss2 3664 . . . . . . 7  |-  ( A  i^i  X )  C_  X
14 ssdif 3579 . . . . . . 7  |-  ( ( A  i^i  X ) 
C_  X  ->  (
( A  i^i  X
)  \  U )  C_  ( X  \  U
) )
1513, 14ax-mp 5 . . . . . 6  |-  ( ( A  i^i  X ) 
\  U )  C_  ( X  \  U )
1612, 15eqsstri 3473 . . . . 5  |-  ( ( A  \  U )  i^i  X )  C_  ( X  \  U )
17 imass2 5222 . . . . 5  |-  ( ( ( A  \  U
)  i^i  X )  C_  ( X  \  U
)  ->  ( F " ( ( A  \  U )  i^i  X
) )  C_  ( F " ( X  \  U ) ) )
1816, 17mp1i 13 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " ( ( A 
\  U )  i^i 
X ) )  C_  ( F " ( X 
\  U ) ) )
1911, 18eqsstrd 3477 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " ( A  \  U ) )  C_  ( F " ( X 
\  U ) ) )
20 sslin 3669 . . 3  |-  ( ( F " ( A 
\  U ) ) 
C_  ( F "
( X  \  U
) )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  C_  ( ( F " U )  i^i  ( F " ( X  \  U ) ) ) )
2119, 20syl 17 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  C_  ( ( F " U )  i^i  ( F " ( X  \  U ) ) ) )
22 eldifn 3567 . . . . . . 7  |-  ( w  e.  ( X  \  U )  ->  -.  w  e.  U )
2322adantl 472 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  -.  w  e.  U )
24 simpll 765 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  J  e.  (TopOn `  X )
)
25 simplr 767 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  U  e.  J )
26 eldifi 3566 . . . . . . . 8  |-  ( w  e.  ( X  \  U )  ->  w  e.  X )
2726adantl 472 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  w  e.  X )
283kqfvima 20793 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  w  e.  X )  ->  (
w  e.  U  <->  ( F `  w )  e.  ( F " U ) ) )
2924, 25, 27, 28syl3anc 1276 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  (
w  e.  U  <->  ( F `  w )  e.  ( F " U ) ) )
3023, 29mtbid 306 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  -.  ( F `  w )  e.  ( F " U ) )
3130ralrimiva 2813 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  A. w  e.  ( X  \  U
)  -.  ( F `
 w )  e.  ( F " U
) )
32 difss 3571 . . . . 5  |-  ( X 
\  U )  C_  X
33 eleq1 2527 . . . . . . 7  |-  ( z  =  ( F `  w )  ->  (
z  e.  ( F
" U )  <->  ( F `  w )  e.  ( F " U ) ) )
3433notbid 300 . . . . . 6  |-  ( z  =  ( F `  w )  ->  ( -.  z  e.  ( F " U )  <->  -.  ( F `  w )  e.  ( F " U
) ) )
3534ralima 6169 . . . . 5  |-  ( ( F  Fn  X  /\  ( X  \  U ) 
C_  X )  -> 
( A. z  e.  ( F " ( X  \  U ) )  -.  z  e.  ( F " U )  <->  A. w  e.  ( X  \  U )  -.  ( F `  w
)  e.  ( F
" U ) ) )
365, 32, 35sylancl 673 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( A. z  e.  ( F " ( X  \  U ) )  -.  z  e.  ( F
" U )  <->  A. w  e.  ( X  \  U
)  -.  ( F `
 w )  e.  ( F " U
) ) )
3731, 36mpbird 240 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  A. z  e.  ( F " ( X  \  U ) )  -.  z  e.  ( F " U ) )
38 disjr 3817 . . 3  |-  ( ( ( F " U
)  i^i  ( F " ( X  \  U
) ) )  =  (/) 
<-> 
A. z  e.  ( F " ( X 
\  U ) )  -.  z  e.  ( F " U ) )
3937, 38sylibr 217 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( X  \  U
) ) )  =  (/) )
40 sseq0 3777 . 2  |-  ( ( ( ( F " U )  i^i  ( F " ( A  \  U ) ) ) 
C_  ( ( F
" U )  i^i  ( F " ( X  \  U ) ) )  /\  ( ( F " U )  i^i  ( F "
( X  \  U
) ) )  =  (/) )  ->  ( ( F " U )  i^i  ( F "
( A  \  U
) ) )  =  (/) )
4121, 39, 40syl2anc 671 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1454    e. wcel 1897   A.wral 2748   {crab 2752    \ cdif 3412    i^i cin 3414    C_ wss 3415   (/)c0 3742    |-> cmpt 4474   dom cdm 4852    |` cres 4854   "cima 4855    Fn wfn 5595   ` cfv 5600  TopOnctopon 19966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-fv 5608  df-topon 19971
This theorem is referenced by:  kqcldsat  20796  regr1lem  20802
  Copyright terms: Public domain W3C validator