MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcldsat Structured version   Unicode version

Theorem kqcldsat 19962
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 19946). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqcldsat  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) )  =  U )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqcldsat
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqffn 19954 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
3 elpreima 5992 . . . . . 6  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " ( F
" U ) )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) ) ) )
42, 3syl 16 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( z  e.  ( `' F "
( F " U
) )  <->  ( z  e.  X  /\  ( F `  z )  e.  ( F " U
) ) ) )
54adantr 465 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
z  e.  ( `' F " ( F
" U ) )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) ) ) )
6 noel 3782 . . . . . . . 8  |-  -.  ( F `  z )  e.  (/)
7 elin 3680 . . . . . . . . 9  |-  ( ( F `  z )  e.  ( ( F
" U )  i^i  ( F " ( X  \  U ) ) )  <->  ( ( F `
 z )  e.  ( F " U
)  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
8 incom 3684 . . . . . . . . . . 11  |-  ( ( F " U )  i^i  ( F "
( X  \  U
) ) )  =  ( ( F "
( X  \  U
) )  i^i  ( F " U ) )
9 eqid 2460 . . . . . . . . . . . . . . . . . . . 20  |-  U. J  =  U. J
109cldss 19289 . . . . . . . . . . . . . . . . . . 19  |-  ( U  e.  ( Clsd `  J
)  ->  U  C_  U. J
)
1110adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_ 
U. J )
12 fndm 5671 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F  Fn  X  ->  dom  F  =  X )
132, 12syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  (TopOn `  X
)  ->  dom  F  =  X )
14 toponuni 19188 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1513, 14eqtrd 2501 . . . . . . . . . . . . . . . . . . 19  |-  ( J  e.  (TopOn `  X
)  ->  dom  F  = 
U. J )
1615adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  dom  F  =  U. J )
1711, 16sseqtr4d 3534 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_ 
dom  F )
1813adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  dom  F  =  X )
1917, 18sseqtrd 3533 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_  X )
2019adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  U  C_  X )
21 dfss4 3725 . . . . . . . . . . . . . . 15  |-  ( U 
C_  X  <->  ( X  \  ( X  \  U
) )  =  U )
2220, 21sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( X  \  ( X  \  U ) )  =  U )
2322imaeq2d 5328 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( F " ( X  \ 
( X  \  U
) ) )  =  ( F " U
) )
2423ineq2d 3693 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " ( X  \  U ) )  i^i  ( F "
( X  \  ( X  \  U ) ) ) )  =  ( ( F " ( X  \  U ) )  i^i  ( F " U ) ) )
25 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  J  e.  (TopOn `  X )
)
2614adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  X  =  U. J )
2726difeq1d 3614 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( X  \  U )  =  ( U. J  \  U ) )
289cldopn 19291 . . . . . . . . . . . . . . . 16  |-  ( U  e.  ( Clsd `  J
)  ->  ( U. J  \  U )  e.  J )
2928adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( U. J  \  U )  e.  J )
3027, 29eqeltrd 2548 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( X  \  U )  e.  J )
3130adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( X  \  U )  e.  J )
321kqdisj 19961 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  ( X  \  U )  e.  J )  ->  (
( F " ( X  \  U ) )  i^i  ( F "
( X  \  ( X  \  U ) ) ) )  =  (/) )
3325, 31, 32syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " ( X  \  U ) )  i^i  ( F "
( X  \  ( X  \  U ) ) ) )  =  (/) )
3424, 33eqtr3d 2503 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " ( X  \  U ) )  i^i  ( F " U ) )  =  (/) )
358, 34syl5eq 2513 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " U
)  i^i  ( F " ( X  \  U
) ) )  =  (/) )
3635eleq2d 2530 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( ( F " U )  i^i  ( F "
( X  \  U
) ) )  <->  ( F `  z )  e.  (/) ) )
377, 36syl5bbr 259 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( ( F `  z )  e.  ( F " U )  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) )  <->  ( F `  z )  e.  (/) ) )
386, 37mtbiri 303 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  -.  ( ( F `  z )  e.  ( F " U )  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
39 imnan 422 . . . . . . 7  |-  ( ( ( F `  z
)  e.  ( F
" U )  ->  -.  ( F `  z
)  e.  ( F
" ( X  \  U ) ) )  <->  -.  ( ( F `  z )  e.  ( F " U )  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
4038, 39sylibr 212 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( F
" U )  ->  -.  ( F `  z
)  e.  ( F
" ( X  \  U ) ) ) )
41 eldif 3479 . . . . . . . . . 10  |-  ( z  e.  ( X  \  U )  <->  ( z  e.  X  /\  -.  z  e.  U ) )
4241baibr 899 . . . . . . . . 9  |-  ( z  e.  X  ->  ( -.  z  e.  U  <->  z  e.  ( X  \  U ) ) )
4342adantl 466 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( -.  z  e.  U  <->  z  e.  ( X  \  U ) ) )
44 simpr 461 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  z  e.  X )
451kqfvima 19959 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  ( X  \  U )  e.  J  /\  z  e.  X )  ->  (
z  e.  ( X 
\  U )  <->  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
4625, 31, 44, 45syl3anc 1223 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
z  e.  ( X 
\  U )  <->  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
4743, 46bitrd 253 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( -.  z  e.  U  <->  ( F `  z )  e.  ( F "
( X  \  U
) ) ) )
4847con1bid 330 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( -.  ( F `  z
)  e.  ( F
" ( X  \  U ) )  <->  z  e.  U ) )
4940, 48sylibd 214 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( F
" U )  -> 
z  e.  U ) )
5049expimpd 603 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) )  ->  z  e.  U
) )
515, 50sylbid 215 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
z  e.  ( `' F " ( F
" U ) )  ->  z  e.  U
) )
5251ssrdv 3503 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) ) 
C_  U )
53 dfss1 3696 . . . 4  |-  ( U 
C_  dom  F  <->  ( dom  F  i^i  U )  =  U )
5417, 53sylib 196 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( dom  F  i^i  U )  =  U )
55 dminss 5411 . . 3  |-  ( dom 
F  i^i  U )  C_  ( `' F "
( F " U
) )
5654, 55syl6eqssr 3548 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_  ( `' F "
( F " U
) ) )
5752, 56eqssd 3514 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) )  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   {crab 2811    \ cdif 3466    i^i cin 3468    C_ wss 3469   (/)c0 3778   U.cuni 4238    |-> cmpt 4498   `'ccnv 4991   dom cdm 4992   "cima 4995    Fn wfn 5574   ` cfv 5579  TopOnctopon 19155   Clsdccld 19276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-fv 5587  df-top 19159  df-topon 19162  df-cld 19279
This theorem is referenced by:  kqcld  19964
  Copyright terms: Public domain W3C validator