MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcldsat Structured version   Visualization version   Unicode version

Theorem kqcldsat 20803
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 20787). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqcldsat  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) )  =  U )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqcldsat
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqffn 20795 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
3 elpreima 6030 . . . . . 6  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " ( F
" U ) )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) ) ) )
42, 3syl 17 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( z  e.  ( `' F "
( F " U
) )  <->  ( z  e.  X  /\  ( F `  z )  e.  ( F " U
) ) ) )
54adantr 471 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
z  e.  ( `' F " ( F
" U ) )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) ) ) )
6 noel 3747 . . . . . . . 8  |-  -.  ( F `  z )  e.  (/)
7 elin 3629 . . . . . . . . 9  |-  ( ( F `  z )  e.  ( ( F
" U )  i^i  ( F " ( X  \  U ) ) )  <->  ( ( F `
 z )  e.  ( F " U
)  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
8 incom 3637 . . . . . . . . . . 11  |-  ( ( F " U )  i^i  ( F "
( X  \  U
) ) )  =  ( ( F "
( X  \  U
) )  i^i  ( F " U ) )
9 eqid 2462 . . . . . . . . . . . . . . . . . . . 20  |-  U. J  =  U. J
109cldss 20099 . . . . . . . . . . . . . . . . . . 19  |-  ( U  e.  ( Clsd `  J
)  ->  U  C_  U. J
)
1110adantl 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_ 
U. J )
12 fndm 5701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F  Fn  X  ->  dom  F  =  X )
132, 12syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  (TopOn `  X
)  ->  dom  F  =  X )
14 toponuni 19997 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1513, 14eqtrd 2496 . . . . . . . . . . . . . . . . . . 19  |-  ( J  e.  (TopOn `  X
)  ->  dom  F  = 
U. J )
1615adantr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  dom  F  =  U. J )
1711, 16sseqtr4d 3481 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_ 
dom  F )
1813adantr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  dom  F  =  X )
1917, 18sseqtrd 3480 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_  X )
2019adantr 471 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  U  C_  X )
21 dfss4 3689 . . . . . . . . . . . . . . 15  |-  ( U 
C_  X  <->  ( X  \  ( X  \  U
) )  =  U )
2220, 21sylib 201 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( X  \  ( X  \  U ) )  =  U )
2322imaeq2d 5190 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( F " ( X  \ 
( X  \  U
) ) )  =  ( F " U
) )
2423ineq2d 3646 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " ( X  \  U ) )  i^i  ( F "
( X  \  ( X  \  U ) ) ) )  =  ( ( F " ( X  \  U ) )  i^i  ( F " U ) ) )
25 simpll 765 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  J  e.  (TopOn `  X )
)
2614adantr 471 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  X  =  U. J )
2726difeq1d 3562 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( X  \  U )  =  ( U. J  \  U ) )
289cldopn 20101 . . . . . . . . . . . . . . . 16  |-  ( U  e.  ( Clsd `  J
)  ->  ( U. J  \  U )  e.  J )
2928adantl 472 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( U. J  \  U )  e.  J )
3027, 29eqeltrd 2540 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( X  \  U )  e.  J )
3130adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( X  \  U )  e.  J )
321kqdisj 20802 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  ( X  \  U )  e.  J )  ->  (
( F " ( X  \  U ) )  i^i  ( F "
( X  \  ( X  \  U ) ) ) )  =  (/) )
3325, 31, 32syl2anc 671 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " ( X  \  U ) )  i^i  ( F "
( X  \  ( X  \  U ) ) ) )  =  (/) )
3424, 33eqtr3d 2498 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " ( X  \  U ) )  i^i  ( F " U ) )  =  (/) )
358, 34syl5eq 2508 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F " U
)  i^i  ( F " ( X  \  U
) ) )  =  (/) )
3635eleq2d 2525 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( ( F " U )  i^i  ( F "
( X  \  U
) ) )  <->  ( F `  z )  e.  (/) ) )
377, 36syl5bbr 267 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( ( F `  z )  e.  ( F " U )  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) )  <->  ( F `  z )  e.  (/) ) )
386, 37mtbiri 309 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  -.  ( ( F `  z )  e.  ( F " U )  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
39 imnan 428 . . . . . . 7  |-  ( ( ( F `  z
)  e.  ( F
" U )  ->  -.  ( F `  z
)  e.  ( F
" ( X  \  U ) ) )  <->  -.  ( ( F `  z )  e.  ( F " U )  /\  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
4038, 39sylibr 217 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( F
" U )  ->  -.  ( F `  z
)  e.  ( F
" ( X  \  U ) ) ) )
41 eldif 3426 . . . . . . . . . 10  |-  ( z  e.  ( X  \  U )  <->  ( z  e.  X  /\  -.  z  e.  U ) )
4241baibr 920 . . . . . . . . 9  |-  ( z  e.  X  ->  ( -.  z  e.  U  <->  z  e.  ( X  \  U ) ) )
4342adantl 472 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( -.  z  e.  U  <->  z  e.  ( X  \  U ) ) )
44 simpr 467 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  z  e.  X )
451kqfvima 20800 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  ( X  \  U )  e.  J  /\  z  e.  X )  ->  (
z  e.  ( X 
\  U )  <->  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
4625, 31, 44, 45syl3anc 1276 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
z  e.  ( X 
\  U )  <->  ( F `  z )  e.  ( F " ( X 
\  U ) ) ) )
4743, 46bitrd 261 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( -.  z  e.  U  <->  ( F `  z )  e.  ( F "
( X  \  U
) ) ) )
4847con1bid 336 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  ( -.  ( F `  z
)  e.  ( F
" ( X  \  U ) )  <->  z  e.  U ) )
4940, 48sylibd 222 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( F
" U )  -> 
z  e.  U ) )
5049expimpd 612 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) )  ->  z  e.  U
) )
515, 50sylbid 223 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  (
z  e.  ( `' F " ( F
" U ) )  ->  z  e.  U
) )
5251ssrdv 3450 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) ) 
C_  U )
53 dfss1 3649 . . . 4  |-  ( U 
C_  dom  F  <->  ( dom  F  i^i  U )  =  U )
5417, 53sylib 201 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( dom  F  i^i  U )  =  U )
55 dminss 5272 . . 3  |-  ( dom 
F  i^i  U )  C_  ( `' F "
( F " U
) )
5654, 55syl6eqssr 3495 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  U  C_  ( `' F "
( F " U
) ) )
5752, 56eqssd 3461 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  ( Clsd `  J
) )  ->  ( `' F " ( F
" U ) )  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898   {crab 2753    \ cdif 3413    i^i cin 3415    C_ wss 3416   (/)c0 3743   U.cuni 4212    |-> cmpt 4477   `'ccnv 4855   dom cdm 4856   "cima 4859    Fn wfn 5600   ` cfv 5605  TopOnctopon 19973   Clsdccld 20086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-fv 5613  df-top 19976  df-topon 19978  df-cld 20089
This theorem is referenced by:  kqcld  20805
  Copyright terms: Public domain W3C validator