MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigthlem Structured version   Visualization version   Unicode version

Theorem konigthlem 9011
Description: Lemma for konigth 9012. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1  |-  A  e. 
_V
konigth.2  |-  S  = 
U_ i  e.  A  ( M `  i )
konigth.3  |-  P  = 
X_ i  e.  A  ( N `  i )
konigth.4  |-  D  =  ( i  e.  A  |->  ( a  e.  ( M `  i ) 
|->  ( ( f `  a ) `  i
) ) )
konigth.5  |-  E  =  ( i  e.  A  |->  ( e `  i
) )
Assertion
Ref Expression
konigthlem  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  S  ~<  P )
Distinct variable groups:    A, a,
e, f, i    D, a, e    E, a, i    M, a, f    N, a, e, f    P, a, e, f    S, a, e, f
Allowed substitution hints:    D( f, i)    P( i)    S( i)    E( e, f)    M( e, i)    N( i)

Proof of Theorem konigthlem
StepHypRef Expression
1 fvex 5889 . . . . . . . . 9  |-  ( M `
 i )  e. 
_V
2 fvex 5889 . . . . . . . . . . 11  |-  ( ( f `  a ) `
 i )  e. 
_V
3 eqid 2471 . . . . . . . . . . 11  |-  ( a  e.  ( M `  i )  |->  ( ( f `  a ) `
 i ) )  =  ( a  e.  ( M `  i
)  |->  ( ( f `
 a ) `  i ) )
42, 3fnmpti 5716 . . . . . . . . . 10  |-  ( a  e.  ( M `  i )  |->  ( ( f `  a ) `
 i ) )  Fn  ( M `  i )
51mptex 6152 . . . . . . . . . . . 12  |-  ( a  e.  ( M `  i )  |->  ( ( f `  a ) `
 i ) )  e.  _V
6 konigth.4 . . . . . . . . . . . . 13  |-  D  =  ( i  e.  A  |->  ( a  e.  ( M `  i ) 
|->  ( ( f `  a ) `  i
) ) )
76fvmpt2 5972 . . . . . . . . . . . 12  |-  ( ( i  e.  A  /\  ( a  e.  ( M `  i ) 
|->  ( ( f `  a ) `  i
) )  e.  _V )  ->  ( D `  i )  =  ( a  e.  ( M `
 i )  |->  ( ( f `  a
) `  i )
) )
85, 7mpan2 685 . . . . . . . . . . 11  |-  ( i  e.  A  ->  ( D `  i )  =  ( a  e.  ( M `  i
)  |->  ( ( f `
 a ) `  i ) ) )
98fneq1d 5676 . . . . . . . . . 10  |-  ( i  e.  A  ->  (
( D `  i
)  Fn  ( M `
 i )  <->  ( a  e.  ( M `  i
)  |->  ( ( f `
 a ) `  i ) )  Fn  ( M `  i
) ) )
104, 9mpbiri 241 . . . . . . . . 9  |-  ( i  e.  A  ->  ( D `  i )  Fn  ( M `  i
) )
11 fnrndomg 8981 . . . . . . . . 9  |-  ( ( M `  i )  e.  _V  ->  (
( D `  i
)  Fn  ( M `
 i )  ->  ran  ( D `  i
)  ~<_  ( M `  i ) ) )
121, 10, 11mpsyl 64 . . . . . . . 8  |-  ( i  e.  A  ->  ran  ( D `  i )  ~<_  ( M `  i
) )
13 domsdomtr 7725 . . . . . . . 8  |-  ( ( ran  ( D `  i )  ~<_  ( M `
 i )  /\  ( M `  i ) 
~<  ( N `  i
) )  ->  ran  ( D `  i ) 
~<  ( N `  i
) )
1412, 13sylan 479 . . . . . . 7  |-  ( ( i  e.  A  /\  ( M `  i ) 
~<  ( N `  i
) )  ->  ran  ( D `  i ) 
~<  ( N `  i
) )
15 sdomdif 7738 . . . . . . 7  |-  ( ran  ( D `  i
)  ~<  ( N `  i )  ->  (
( N `  i
)  \  ran  ( D `
 i ) )  =/=  (/) )
1614, 15syl 17 . . . . . 6  |-  ( ( i  e.  A  /\  ( M `  i ) 
~<  ( N `  i
) )  ->  (
( N `  i
)  \  ran  ( D `
 i ) )  =/=  (/) )
1716ralimiaa 2795 . . . . 5  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  A. i  e.  A  ( ( N `  i )  \  ran  ( D `  i ) )  =/=  (/) )
18 konigth.1 . . . . . 6  |-  A  e. 
_V
19 fvex 5889 . . . . . . 7  |-  ( N `
 i )  e. 
_V
20 difss 3549 . . . . . . 7  |-  ( ( N `  i ) 
\  ran  ( D `  i ) )  C_  ( N `  i )
2119, 20ssexi 4541 . . . . . 6  |-  ( ( N `  i ) 
\  ran  ( D `  i ) )  e. 
_V
2218, 21ac6c5 8930 . . . . 5  |-  ( A. i  e.  A  (
( N `  i
)  \  ran  ( D `
 i ) )  =/=  (/)  ->  E. e A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) ) )
23 equid 1863 . . . . . . 7  |-  f  =  f
24 eldifi 3544 . . . . . . . . . . . . 13  |-  ( ( e `  i )  e.  ( ( N `
 i )  \  ran  ( D `  i
) )  ->  (
e `  i )  e.  ( N `  i
) )
25 fvex 5889 . . . . . . . . . . . . . . 15  |-  ( e `
 i )  e. 
_V
26 konigth.5 . . . . . . . . . . . . . . . 16  |-  E  =  ( i  e.  A  |->  ( e `  i
) )
2726fvmpt2 5972 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  A  /\  ( e `  i
)  e.  _V )  ->  ( E `  i
)  =  ( e `
 i ) )
2825, 27mpan2 685 . . . . . . . . . . . . . 14  |-  ( i  e.  A  ->  ( E `  i )  =  ( e `  i ) )
2928eleq1d 2533 . . . . . . . . . . . . 13  |-  ( i  e.  A  ->  (
( E `  i
)  e.  ( N `
 i )  <->  ( e `  i )  e.  ( N `  i ) ) )
3024, 29syl5ibr 229 . . . . . . . . . . . 12  |-  ( i  e.  A  ->  (
( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  -> 
( E `  i
)  e.  ( N `
 i ) ) )
3130ralimia 2794 . . . . . . . . . . 11  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  A. i  e.  A  ( E `  i )  e.  ( N `  i ) )
3225, 26fnmpti 5716 . . . . . . . . . . 11  |-  E  Fn  A
3331, 32jctil 546 . . . . . . . . . 10  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( E  Fn  A  /\  A. i  e.  A  ( E `  i )  e.  ( N `  i ) ) )
3418mptex 6152 . . . . . . . . . . . 12  |-  ( i  e.  A  |->  ( e `
 i ) )  e.  _V
3526, 34eqeltri 2545 . . . . . . . . . . 11  |-  E  e. 
_V
3635elixp 7547 . . . . . . . . . 10  |-  ( E  e.  X_ i  e.  A  ( N `  i )  <-> 
( E  Fn  A  /\  A. i  e.  A  ( E `  i )  e.  ( N `  i ) ) )
3733, 36sylibr 217 . . . . . . . . 9  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  E  e.  X_ i  e.  A  ( N `  i ) )
38 konigth.3 . . . . . . . . 9  |-  P  = 
X_ i  e.  A  ( N `  i )
3937, 38syl6eleqr 2560 . . . . . . . 8  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  E  e.  P )
40 foelrn 6056 . . . . . . . . . 10  |-  ( ( f : S -onto-> P  /\  E  e.  P
)  ->  E. a  e.  S  E  =  ( f `  a
) )
4140expcom 442 . . . . . . . . 9  |-  ( E  e.  P  ->  (
f : S -onto-> P  ->  E. a  e.  S  E  =  ( f `  a ) ) )
42 konigth.2 . . . . . . . . . . . . . . 15  |-  S  = 
U_ i  e.  A  ( M `  i )
4342eleq2i 2541 . . . . . . . . . . . . . 14  |-  ( a  e.  S  <->  a  e.  U_ i  e.  A  ( M `  i ) )
44 eliun 4274 . . . . . . . . . . . . . 14  |-  ( a  e.  U_ i  e.  A  ( M `  i )  <->  E. i  e.  A  a  e.  ( M `  i ) )
4543, 44bitri 257 . . . . . . . . . . . . 13  |-  ( a  e.  S  <->  E. i  e.  A  a  e.  ( M `  i ) )
46 nfra1 2785 . . . . . . . . . . . . . . 15  |-  F/ i A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )
47 nfv 1769 . . . . . . . . . . . . . . 15  |-  F/ i  E  =  ( f `
 a )
4846, 47nfan 2031 . . . . . . . . . . . . . 14  |-  F/ i ( A. i  e.  A  ( e `  i )  e.  ( ( N `  i
)  \  ran  ( D `
 i ) )  /\  E  =  ( f `  a ) )
49 nfv 1769 . . . . . . . . . . . . . 14  |-  F/ i  -.  f  =  f
5028ad2antrl 742 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E  =  ( f `
 a )  /\  ( i  e.  A  /\  a  e.  ( M `  i )
) )  ->  ( E `  i )  =  ( e `  i ) )
51 fveq1 5878 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E  =  ( f `  a )  ->  ( E `  i )  =  ( ( f `
 a ) `  i ) )
528fveq1d 5881 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  e.  A  ->  (
( D `  i
) `  a )  =  ( ( a  e.  ( M `  i )  |->  ( ( f `  a ) `
 i ) ) `
 a ) )
533fvmpt2 5972 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  e.  ( M `
 i )  /\  ( ( f `  a ) `  i
)  e.  _V )  ->  ( ( a  e.  ( M `  i
)  |->  ( ( f `
 a ) `  i ) ) `  a )  =  ( ( f `  a
) `  i )
)
542, 53mpan2 685 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( a  e.  ( M `  i )  ->  (
( a  e.  ( M `  i ) 
|->  ( ( f `  a ) `  i
) ) `  a
)  =  ( ( f `  a ) `
 i ) )
5552, 54sylan9eq 2525 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( i  e.  A  /\  a  e.  ( M `  i ) )  -> 
( ( D `  i ) `  a
)  =  ( ( f `  a ) `
 i ) )
5655eqcomd 2477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  A  /\  a  e.  ( M `  i ) )  -> 
( ( f `  a ) `  i
)  =  ( ( D `  i ) `
 a ) )
5751, 56sylan9eq 2525 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E  =  ( f `
 a )  /\  ( i  e.  A  /\  a  e.  ( M `  i )
) )  ->  ( E `  i )  =  ( ( D `
 i ) `  a ) )
5850, 57eqtr3d 2507 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E  =  ( f `
 a )  /\  ( i  e.  A  /\  a  e.  ( M `  i )
) )  ->  (
e `  i )  =  ( ( D `
 i ) `  a ) )
59 fnfvelrn 6034 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D `  i
)  Fn  ( M `
 i )  /\  a  e.  ( M `  i ) )  -> 
( ( D `  i ) `  a
)  e.  ran  ( D `  i )
)
6010, 59sylan 479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  A  /\  a  e.  ( M `  i ) )  -> 
( ( D `  i ) `  a
)  e.  ran  ( D `  i )
)
6160adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E  =  ( f `
 a )  /\  ( i  e.  A  /\  a  e.  ( M `  i )
) )  ->  (
( D `  i
) `  a )  e.  ran  ( D `  i ) )
6258, 61eqeltrd 2549 . . . . . . . . . . . . . . . . . 18  |-  ( ( E  =  ( f `
 a )  /\  ( i  e.  A  /\  a  e.  ( M `  i )
) )  ->  (
e `  i )  e.  ran  ( D `  i ) )
63623adant1 1048 . . . . . . . . . . . . . . . . 17  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a )  /\  (
i  e.  A  /\  a  e.  ( M `  i ) ) )  ->  ( e `  i )  e.  ran  ( D `  i ) )
64 simp1 1030 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a )  /\  (
i  e.  A  /\  a  e.  ( M `  i ) ) )  ->  A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) ) )
65 simp3l 1058 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a )  /\  (
i  e.  A  /\  a  e.  ( M `  i ) ) )  ->  i  e.  A
)
66 rsp 2773 . . . . . . . . . . . . . . . . . . 19  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( i  e.  A  ->  ( e `
 i )  e.  ( ( N `  i )  \  ran  ( D `  i ) ) ) )
67 eldifn 3545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e `  i )  e.  ( ( N `
 i )  \  ran  ( D `  i
) )  ->  -.  ( e `  i
)  e.  ran  ( D `  i )
)
6866, 67syl6 33 . . . . . . . . . . . . . . . . . 18  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( i  e.  A  ->  -.  (
e `  i )  e.  ran  ( D `  i ) ) )
6964, 65, 68sylc 61 . . . . . . . . . . . . . . . . 17  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a )  /\  (
i  e.  A  /\  a  e.  ( M `  i ) ) )  ->  -.  ( e `  i )  e.  ran  ( D `  i ) )
7063, 69pm2.21dd 179 . . . . . . . . . . . . . . . 16  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a )  /\  (
i  e.  A  /\  a  e.  ( M `  i ) ) )  ->  -.  f  =  f )
71703expia 1233 . . . . . . . . . . . . . . 15  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a ) )  -> 
( ( i  e.  A  /\  a  e.  ( M `  i
) )  ->  -.  f  =  f )
)
7271expd 443 . . . . . . . . . . . . . 14  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a ) )  -> 
( i  e.  A  ->  ( a  e.  ( M `  i )  ->  -.  f  =  f ) ) )
7348, 49, 72rexlimd 2866 . . . . . . . . . . . . 13  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a ) )  -> 
( E. i  e.  A  a  e.  ( M `  i )  ->  -.  f  =  f ) )
7445, 73syl5bi 225 . . . . . . . . . . . 12  |-  ( ( A. i  e.  A  ( e `  i
)  e.  ( ( N `  i ) 
\  ran  ( D `  i ) )  /\  E  =  ( f `  a ) )  -> 
( a  e.  S  ->  -.  f  =  f ) )
7574ex 441 . . . . . . . . . . 11  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( E  =  ( f `  a )  ->  (
a  e.  S  ->  -.  f  =  f
) ) )
7675com23 80 . . . . . . . . . 10  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( a  e.  S  ->  ( E  =  ( f `  a )  ->  -.  f  =  f )
) )
7776rexlimdv 2870 . . . . . . . . 9  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( E. a  e.  S  E  =  ( f `  a )  ->  -.  f  =  f )
)
7841, 77syl9r 73 . . . . . . . 8  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( E  e.  P  ->  ( f : S -onto-> P  ->  -.  f  =  f
) ) )
7939, 78mpd 15 . . . . . . 7  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  ( f : S -onto-> P  ->  -.  f  =  f ) )
8023, 79mt2i 122 . . . . . 6  |-  ( A. i  e.  A  (
e `  i )  e.  ( ( N `  i )  \  ran  ( D `  i ) )  ->  -.  f : S -onto-> P )
8180exlimiv 1784 . . . . 5  |-  ( E. e A. i  e.  A  ( e `  i )  e.  ( ( N `  i
)  \  ran  ( D `
 i ) )  ->  -.  f : S -onto-> P )
8217, 22, 813syl 18 . . . 4  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  -.  f : S -onto-> P )
8382nexdv 1790 . . 3  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  -.  E. f 
f : S -onto-> P
)
8410dom 7720 . . . . . . . 8  |-  (/)  ~<_  ( M `
 i )
85 domsdomtr 7725 . . . . . . . 8  |-  ( (
(/)  ~<_  ( M `  i )  /\  ( M `  i )  ~<  ( N `  i
) )  ->  (/)  ~<  ( N `  i )
)
8684, 85mpan 684 . . . . . . 7  |-  ( ( M `  i ) 
~<  ( N `  i
)  ->  (/)  ~<  ( N `  i )
)
87190sdom 7721 . . . . . . 7  |-  ( (/)  ~< 
( N `  i
)  <->  ( N `  i )  =/=  (/) )
8886, 87sylib 201 . . . . . 6  |-  ( ( M `  i ) 
~<  ( N `  i
)  ->  ( N `  i )  =/=  (/) )
8988ralimi 2796 . . . . 5  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  A. i  e.  A  ( N `  i )  =/=  (/) )
9038neeq1i 2707 . . . . . 6  |-  ( P  =/=  (/)  <->  X_ i  e.  A  ( N `  i )  =/=  (/) )
9119rgenw 2768 . . . . . . . . 9  |-  A. i  e.  A  ( N `  i )  e.  _V
92 ixpexg 7564 . . . . . . . . 9  |-  ( A. i  e.  A  ( N `  i )  e.  _V  ->  X_ i  e.  A  ( N `  i )  e.  _V )
9391, 92ax-mp 5 . . . . . . . 8  |-  X_ i  e.  A  ( N `  i )  e.  _V
9438, 93eqeltri 2545 . . . . . . 7  |-  P  e. 
_V
95940sdom 7721 . . . . . 6  |-  ( (/)  ~<  P 
<->  P  =/=  (/) )
9618, 19ac9 8931 . . . . . 6  |-  ( A. i  e.  A  ( N `  i )  =/=  (/)  <->  X_ i  e.  A  ( N `  i )  =/=  (/) )
9790, 95, 963bitr4i 285 . . . . 5  |-  ( (/)  ~<  P 
<-> 
A. i  e.  A  ( N `  i )  =/=  (/) )
9889, 97sylibr 217 . . . 4  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  (/)  ~<  P )
9918, 1iunex 6792 . . . . . . 7  |-  U_ i  e.  A  ( M `  i )  e.  _V
10042, 99eqeltri 2545 . . . . . 6  |-  S  e. 
_V
101 domtri 8999 . . . . . 6  |-  ( ( P  e.  _V  /\  S  e.  _V )  ->  ( P  ~<_  S  <->  -.  S  ~<  P ) )
10294, 100, 101mp2an 686 . . . . 5  |-  ( P  ~<_  S  <->  -.  S  ~<  P )
103102biimpri 211 . . . 4  |-  ( -.  S  ~<  P  ->  P  ~<_  S )
104 fodomr 7741 . . . 4  |-  ( (
(/)  ~<  P  /\  P  ~<_  S )  ->  E. f 
f : S -onto-> P
)
10598, 103, 104syl2an 485 . . 3  |-  ( ( A. i  e.  A  ( M `  i ) 
~<  ( N `  i
)  /\  -.  S  ~<  P )  ->  E. f 
f : S -onto-> P
)
10683, 105mtand 671 . 2  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  -.  -.  S  ~<  P )
107106notnotrd 117 1  |-  ( A. i  e.  A  ( M `  i )  ~<  ( N `  i
)  ->  S  ~<  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    \ cdif 3387   (/)c0 3722   U_ciun 4269   class class class wbr 4395    |-> cmpt 4454   ran crn 4840    Fn wfn 5584   -onto->wfo 5587   ` cfv 5589   X_cixp 7540    ~<_ cdom 7585    ~< csdm 7586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-ac2 8911
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-card 8391  df-acn 8394  df-ac 8565
This theorem is referenced by:  konigth  9012
  Copyright terms: Public domain W3C validator