MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem5 Structured version   Unicode version

Theorem kmlem5 8566
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem5  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  =  (/) )
Distinct variable group:    x, w, z

Proof of Theorem kmlem5
StepHypRef Expression
1 difss 3570 . . . 4  |-  ( w 
\  U. ( x  \  { w } ) )  C_  w
2 sslin 3665 . . . 4  |-  ( ( w  \  U. (
x  \  { w } ) )  C_  w  ->  ( ( z 
\  U. ( x  \  { z } ) )  i^i  ( w 
\  U. ( x  \  { w } ) ) )  C_  (
( z  \  U. ( x  \  { z } ) )  i^i  w ) )
31, 2ax-mp 5 . . 3  |-  ( ( z  \  U. (
x  \  { z } ) )  i^i  ( w  \  U. ( x  \  { w } ) ) ) 
C_  ( ( z 
\  U. ( x  \  { z } ) )  i^i  w )
4 kmlem4 8565 . . 3  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  w )  =  (/) )
53, 4syl5sseq 3490 . 2  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  C_  (/) )
6 ss0b 3769 . 2  |-  ( ( ( z  \  U. ( x  \  { z } ) )  i^i  ( w  \  U. ( x  \  { w } ) ) ) 
C_  (/)  <->  ( ( z 
\  U. ( x  \  { z } ) )  i^i  ( w 
\  U. ( x  \  { w } ) ) )  =  (/) )
75, 6sylib 196 1  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    =/= wne 2598    \ cdif 3411    i^i cin 3413    C_ wss 3414   (/)c0 3738   {csn 3972   U.cuni 4191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-v 3061  df-dif 3417  df-in 3421  df-ss 3428  df-nul 3739  df-sn 3973  df-uni 4192
This theorem is referenced by:  kmlem9  8570
  Copyright terms: Public domain W3C validator