MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem13 Structured version   Visualization version   Unicode version

Theorem kmlem13 8597
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004.)
Hypothesis
Ref Expression
kmlem9.1  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
Assertion
Ref Expression
kmlem13  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  <->  A. x
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
Distinct variable groups:    x, y,
z, w, v, u, t    y, A, z, w, v
Allowed substitution hints:    A( x, u, t)

Proof of Theorem kmlem13
Dummy variables  h  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kmlem1 8585 . . 3  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  ->  A. x
( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) )
2 raleq 2989 . . . . . . 7  |-  ( x  =  h  ->  ( A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) ) )
32raleqbi1dv 2997 . . . . . 6  |-  ( x  =  h  ->  ( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) ) )
4 raleq 2989 . . . . . . 7  |-  ( x  =  h  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
)  <->  A. z  e.  h  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
54exbidv 1770 . . . . . 6  |-  ( x  =  h  ->  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) )  <->  E. y A. z  e.  h  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
63, 5imbi12d 322 . . . . 5  |-  ( x  =  h  ->  (
( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) )  <->  ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) ) )
76cbvalv 2118 . . . 4  |-  ( A. x ( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) )  <->  A. h ( A. z  e.  h  A. w  e.  h  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  E. y A. z  e.  h  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) ) ) )
8 kmlem9.1 . . . . . . 7  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
98kmlem10 8594 . . . . . 6  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) )  ->  E. y A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) )
10 ineq2 3630 . . . . . . . . . . . 12  |-  ( y  =  g  ->  (
z  i^i  y )  =  ( z  i^i  g ) )
1110eleq2d 2516 . . . . . . . . . . 11  |-  ( y  =  g  ->  (
v  e.  ( z  i^i  y )  <->  v  e.  ( z  i^i  g
) ) )
1211eubidv 2321 . . . . . . . . . 10  |-  ( y  =  g  ->  ( E! v  v  e.  ( z  i^i  y
)  <->  E! v  v  e.  ( z  i^i  g
) ) )
1312imbi2d 318 . . . . . . . . 9  |-  ( y  =  g  ->  (
( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
)  <->  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  g ) ) ) )
1413ralbidv 2829 . . . . . . . 8  |-  ( y  =  g  ->  ( A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
)  <->  A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  g )
) ) )
1514cbvexv 2119 . . . . . . 7  |-  ( E. y A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) )  <->  E. g A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  g )
) )
16 kmlem3 8587 . . . . . . . . . . 11  |-  ( ( z  \  U. (
x  \  { z } ) )  =/=  (/) 
<->  E. v  e.  z 
A. w  e.  x  ( z  =/=  w  ->  -.  v  e.  ( z  i^i  w ) ) )
17 ralinexa 2841 . . . . . . . . . . . 12  |-  ( A. w  e.  x  (
z  =/=  w  ->  -.  v  e.  (
z  i^i  w )
)  <->  -.  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) ) )
1817rexbii 2891 . . . . . . . . . . 11  |-  ( E. v  e.  z  A. w  e.  x  (
z  =/=  w  ->  -.  v  e.  (
z  i^i  w )
)  <->  E. v  e.  z  -.  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) ) )
19 rexnal 2838 . . . . . . . . . . 11  |-  ( E. v  e.  z  -. 
E. w  e.  x  ( z  =/=  w  /\  v  e.  (
z  i^i  w )
)  <->  -.  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) ) )
2016, 18, 193bitri 275 . . . . . . . . . 10  |-  ( ( z  \  U. (
x  \  { z } ) )  =/=  (/) 
<->  -.  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) ) )
2120ralbii 2821 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  \  U. (
x  \  { z } ) )  =/=  (/) 
<-> 
A. z  e.  x  -.  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  (
z  i^i  w )
) )
22 ralnex 2836 . . . . . . . . 9  |-  ( A. z  e.  x  -.  A. v  e.  z  E. w  e.  x  (
z  =/=  w  /\  v  e.  ( z  i^i  w ) )  <->  -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) ) )
2321, 22bitri 253 . . . . . . . 8  |-  ( A. z  e.  x  (
z  \  U. (
x  \  { z } ) )  =/=  (/) 
<->  -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) ) )
248kmlem12 8596 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  \  U. (
x  \  { z } ) )  =/=  (/)  ->  ( A. z  e.  A  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  g ) )  ->  A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  ( g  i^i  U. A ) ) ) ) )
25 vex 3050 . . . . . . . . . . . . 13  |-  g  e. 
_V
2625inex1 4547 . . . . . . . . . . . 12  |-  ( g  i^i  U. A )  e.  _V
27 ineq2 3630 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( g  i^i  U. A )  ->  (
z  i^i  y )  =  ( z  i^i  ( g  i^i  U. A ) ) )
2827eleq2d 2516 . . . . . . . . . . . . . . 15  |-  ( y  =  ( g  i^i  U. A )  ->  (
v  e.  ( z  i^i  y )  <->  v  e.  ( z  i^i  (
g  i^i  U. A ) ) ) )
2928eubidv 2321 . . . . . . . . . . . . . 14  |-  ( y  =  ( g  i^i  U. A )  ->  ( E! v  v  e.  ( z  i^i  y
)  <->  E! v  v  e.  ( z  i^i  (
g  i^i  U. A ) ) ) )
3029imbi2d 318 . . . . . . . . . . . . 13  |-  ( y  =  ( g  i^i  U. A )  ->  (
( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
)  <->  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  ( g  i^i  U. A ) ) ) ) )
3130ralbidv 2829 . . . . . . . . . . . 12  |-  ( y  =  ( g  i^i  U. A )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
)  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  ( g  i^i  U. A ) ) ) ) )
3226, 31spcev 3143 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  ( g  i^i  U. A ) ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) )
3324, 32syl6 34 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  \  U. (
x  \  { z } ) )  =/=  (/)  ->  ( A. z  e.  A  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  g ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) )
3433exlimdv 1781 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  \  U. (
x  \  { z } ) )  =/=  (/)  ->  ( E. g A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  g )
)  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
3534com12 32 . . . . . . . 8  |-  ( E. g A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  g ) )  -> 
( A. z  e.  x  ( z  \  U. ( x  \  {
z } ) )  =/=  (/)  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
3623, 35syl5bir 222 . . . . . . 7  |-  ( E. g A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  g ) )  -> 
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
3715, 36sylbi 199 . . . . . 6  |-  ( E. y A. z  e.  A  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) )  -> 
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
389, 37syl 17 . . . . 5  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) )  ->  ( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  (
z  =/=  w  /\  v  e.  ( z  i^i  w ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) ) ) )
3938alrimiv 1775 . . . 4  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) )  ->  A. x
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
407, 39sylbi 199 . . 3  |-  ( A. x ( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) )  ->  A. x
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
411, 40syl 17 . 2  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  ->  A. x
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
42 kmlem7 8591 . . . . 5  |-  ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  (
z  =/=  w  /\  v  e.  ( z  i^i  w ) ) )
4342imim1i 60 . . . 4  |-  ( ( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) )  ->  (
( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) )
44 biimt 337 . . . . . . . . 9  |-  ( z  =/=  (/)  ->  ( E! v  v  e.  (
z  i^i  y )  <->  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
4544ralimi 2783 . . . . . . . 8  |-  ( A. z  e.  x  z  =/=  (/)  ->  A. z  e.  x  ( E! v  v  e.  (
z  i^i  y )  <->  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
46 ralbi 2923 . . . . . . . 8  |-  ( A. z  e.  x  ( E! v  v  e.  ( z  i^i  y
)  <->  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) ) )  ->  ( A. z  e.  x  E! v 
v  e.  ( z  i^i  y )  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) )
4745, 46syl 17 . . . . . . 7  |-  ( A. z  e.  x  z  =/=  (/)  ->  ( A. z  e.  x  E! v  v  e.  (
z  i^i  y )  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
4847exbidv 1770 . . . . . 6  |-  ( A. z  e.  x  z  =/=  (/)  ->  ( E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
)  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) )
4948adantr 467 . . . . 5  |-  ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  ( E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
5049pm5.74i 249 . . . 4  |-  ( ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) )  <-> 
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v 
v  e.  ( z  i^i  y ) ) ) )
5143, 50sylibr 216 . . 3  |-  ( ( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) )  ->  (
( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
5251alimi 1686 . 2  |-  ( A. x ( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  (
z  =/=  w  /\  v  e.  ( z  i^i  w ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) ) )  ->  A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) ) )
5341, 52impbii 191 1  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  <->  A. x
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1444    = wceq 1446   E.wex 1665    e. wcel 1889   E!weu 2301   {cab 2439    =/= wne 2624   A.wral 2739   E.wrex 2740    \ cdif 3403    i^i cin 3405   (/)c0 3733   {csn 3970   U.cuni 4201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593
This theorem is referenced by:  dfackm  8601
  Copyright terms: Public domain W3C validator