MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem11 Structured version   Unicode version

Theorem kmlem11 8443
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
Assertion
Ref Expression
kmlem11  |-  ( z  e.  x  ->  (
z  i^i  U. A )  =  ( z  \  U. ( x  \  {
z } ) ) )
Distinct variable groups:    x, z, u, t    z, A
Allowed substitution hints:    A( x, u, t)

Proof of Theorem kmlem11
StepHypRef Expression
1 kmlem9.1 . . . . . 6  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
21unieqi 4211 . . . . 5  |-  U. A  =  U. { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }
3 vex 3081 . . . . . . 7  |-  t  e. 
_V
4 difexg 4551 . . . . . . 7  |-  ( t  e.  _V  ->  (
t  \  U. (
x  \  { t } ) )  e. 
_V )
53, 4ax-mp 5 . . . . . 6  |-  ( t 
\  U. ( x  \  { t } ) )  e.  _V
65dfiun2 4315 . . . . 5  |-  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) )  =  U. {
u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }
72, 6eqtr4i 2486 . . . 4  |-  U. A  =  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) )
87ineq2i 3660 . . 3  |-  ( z  i^i  U. A )  =  ( z  i^i  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) ) )
9 iunin2 4345 . . 3  |-  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) ) )
108, 9eqtr4i 2486 . 2  |-  ( z  i^i  U. A )  =  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )
11 undif2 3866 . . . . . 6  |-  ( { z }  u.  (
x  \  { z } ) )  =  ( { z }  u.  x )
12 snssi 4128 . . . . . . 7  |-  ( z  e.  x  ->  { z }  C_  x )
13 ssequn1 3637 . . . . . . 7  |-  ( { z }  C_  x  <->  ( { z }  u.  x )  =  x )
1412, 13sylib 196 . . . . . 6  |-  ( z  e.  x  ->  ( { z }  u.  x )  =  x )
1511, 14syl5req 2508 . . . . 5  |-  ( z  e.  x  ->  x  =  ( { z }  u.  ( x 
\  { z } ) ) )
1615iuneq1d 4306 . . . 4  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) ) )
17 iunxun 4363 . . . . . 6  |-  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( U_ t  e.  { z }  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  u.  U_ t  e.  ( x  \  { z } ) ( z  i^i  (
t  \  U. (
x  \  { t } ) ) ) )
18 vex 3081 . . . . . . . 8  |-  z  e. 
_V
19 difeq1 3578 . . . . . . . . . 10  |-  ( t  =  z  ->  (
t  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { t } ) ) )
20 sneq 3998 . . . . . . . . . . . . 13  |-  ( t  =  z  ->  { t }  =  { z } )
2120difeq2d 3585 . . . . . . . . . . . 12  |-  ( t  =  z  ->  (
x  \  { t } )  =  ( x  \  { z } ) )
2221unieqd 4212 . . . . . . . . . . 11  |-  ( t  =  z  ->  U. (
x  \  { t } )  =  U. ( x  \  { z } ) )
2322difeq2d 3585 . . . . . . . . . 10  |-  ( t  =  z  ->  (
z  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { z } ) ) )
2419, 23eqtrd 2495 . . . . . . . . 9  |-  ( t  =  z  ->  (
t  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { z } ) ) )
2524ineq2d 3663 . . . . . . . 8  |-  ( t  =  z  ->  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) ) )
2618, 25iunxsn 4361 . . . . . . 7  |-  U_ t  e.  { z }  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )
2726uneq1i 3617 . . . . . 6  |-  ( U_ t  e.  { z }  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  { z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )
2817, 27eqtri 2483 . . . . 5  |-  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )
29 eldifsni 4112 . . . . . . . . . 10  |-  ( t  e.  ( x  \  { z } )  ->  t  =/=  z
)
30 incom 3654 . . . . . . . . . . . 12  |-  ( z  i^i  ( t  \  U. ( x  \  {
t } ) ) )  =  ( ( t  \  U. (
x  \  { t } ) )  i^i  z )
31 kmlem4 8436 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  t  =/=  z )  -> 
( ( t  \  U. ( x  \  {
t } ) )  i^i  z )  =  (/) )
3230, 31syl5eq 2507 . . . . . . . . . . 11  |-  ( ( z  e.  x  /\  t  =/=  z )  -> 
( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/) )
3332ex 434 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
t  =/=  z  -> 
( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/) ) )
3429, 33syl5 32 . . . . . . . . 9  |-  ( z  e.  x  ->  (
t  e.  ( x 
\  { z } )  ->  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  (/) ) )
3534ralrimiv 2828 . . . . . . . 8  |-  ( z  e.  x  ->  A. t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  (/) )
36 iuneq2 4298 . . . . . . . 8  |-  ( A. t  e.  ( x  \  { z } ) ( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/)  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( x  \  { z } )
(/) )
3735, 36syl 16 . . . . . . 7  |-  ( z  e.  x  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( x  \  { z } )
(/) )
38 iun0 4337 . . . . . . 7  |-  U_ t  e.  ( x  \  {
z } ) (/)  =  (/)
3937, 38syl6eq 2511 . . . . . 6  |-  ( z  e.  x  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  (/) )
4039uneq2d 3621 . . . . 5  |-  ( z  e.  x  ->  (
( z  i^i  (
z  \  U. (
x  \  { z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  { z } ) ) )  u.  (/) ) )
4128, 40syl5eq 2507 . . . 4  |-  ( z  e.  x  ->  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  (/) ) )
4216, 41eqtrd 2495 . . 3  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  (/) ) )
43 un0 3773 . . . 4  |-  ( ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )  u.  (/) )  =  ( z  i^i  (
z  \  U. (
x  \  { z } ) ) )
44 indif 3703 . . . 4  |-  ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  =  ( z 
\  U. ( x  \  { z } ) )
4543, 44eqtri 2483 . . 3  |-  ( ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )  u.  (/) )  =  ( z  \  U. ( x  \  { z } ) )
4642, 45syl6eq 2511 . 2  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  \  U. ( x  \  {
z } ) ) )
4710, 46syl5eq 2507 1  |-  ( z  e.  x  ->  (
z  i^i  U. A )  =  ( z  \  U. ( x  \  {
z } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2439    =/= wne 2648   A.wral 2799   E.wrex 2800   _Vcvv 3078    \ cdif 3436    u. cun 3437    i^i cin 3438    C_ wss 3439   (/)c0 3748   {csn 3988   U.cuni 4202   U_ciun 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-sn 3989  df-uni 4203  df-iun 4284
This theorem is referenced by:  kmlem12  8444
  Copyright terms: Public domain W3C validator