MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem11 Structured version   Unicode version

Theorem kmlem11 8539
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
Assertion
Ref Expression
kmlem11  |-  ( z  e.  x  ->  (
z  i^i  U. A )  =  ( z  \  U. ( x  \  {
z } ) ) )
Distinct variable groups:    x, z, u, t    z, A
Allowed substitution hints:    A( x, u, t)

Proof of Theorem kmlem11
StepHypRef Expression
1 kmlem9.1 . . . . . 6  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
21unieqi 4254 . . . . 5  |-  U. A  =  U. { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }
3 vex 3116 . . . . . . 7  |-  t  e. 
_V
4 difexg 4595 . . . . . . 7  |-  ( t  e.  _V  ->  (
t  \  U. (
x  \  { t } ) )  e. 
_V )
53, 4ax-mp 5 . . . . . 6  |-  ( t 
\  U. ( x  \  { t } ) )  e.  _V
65dfiun2 4359 . . . . 5  |-  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) )  =  U. {
u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }
72, 6eqtr4i 2499 . . . 4  |-  U. A  =  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) )
87ineq2i 3697 . . 3  |-  ( z  i^i  U. A )  =  ( z  i^i  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) ) )
9 iunin2 4389 . . 3  |-  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) ) )
108, 9eqtr4i 2499 . 2  |-  ( z  i^i  U. A )  =  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )
11 undif2 3903 . . . . . 6  |-  ( { z }  u.  (
x  \  { z } ) )  =  ( { z }  u.  x )
12 snssi 4171 . . . . . . 7  |-  ( z  e.  x  ->  { z }  C_  x )
13 ssequn1 3674 . . . . . . 7  |-  ( { z }  C_  x  <->  ( { z }  u.  x )  =  x )
1412, 13sylib 196 . . . . . 6  |-  ( z  e.  x  ->  ( { z }  u.  x )  =  x )
1511, 14syl5req 2521 . . . . 5  |-  ( z  e.  x  ->  x  =  ( { z }  u.  ( x 
\  { z } ) ) )
1615iuneq1d 4350 . . . 4  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) ) )
17 iunxun 4407 . . . . . 6  |-  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( U_ t  e.  { z }  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  u.  U_ t  e.  ( x  \  { z } ) ( z  i^i  (
t  \  U. (
x  \  { t } ) ) ) )
18 vex 3116 . . . . . . . 8  |-  z  e. 
_V
19 difeq1 3615 . . . . . . . . . 10  |-  ( t  =  z  ->  (
t  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { t } ) ) )
20 sneq 4037 . . . . . . . . . . . . 13  |-  ( t  =  z  ->  { t }  =  { z } )
2120difeq2d 3622 . . . . . . . . . . . 12  |-  ( t  =  z  ->  (
x  \  { t } )  =  ( x  \  { z } ) )
2221unieqd 4255 . . . . . . . . . . 11  |-  ( t  =  z  ->  U. (
x  \  { t } )  =  U. ( x  \  { z } ) )
2322difeq2d 3622 . . . . . . . . . 10  |-  ( t  =  z  ->  (
z  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { z } ) ) )
2419, 23eqtrd 2508 . . . . . . . . 9  |-  ( t  =  z  ->  (
t  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { z } ) ) )
2524ineq2d 3700 . . . . . . . 8  |-  ( t  =  z  ->  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) ) )
2618, 25iunxsn 4405 . . . . . . 7  |-  U_ t  e.  { z }  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )
2726uneq1i 3654 . . . . . 6  |-  ( U_ t  e.  { z }  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  { z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )
2817, 27eqtri 2496 . . . . 5  |-  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )
29 eldifsni 4153 . . . . . . . . . 10  |-  ( t  e.  ( x  \  { z } )  ->  t  =/=  z
)
30 incom 3691 . . . . . . . . . . . 12  |-  ( z  i^i  ( t  \  U. ( x  \  {
t } ) ) )  =  ( ( t  \  U. (
x  \  { t } ) )  i^i  z )
31 kmlem4 8532 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  t  =/=  z )  -> 
( ( t  \  U. ( x  \  {
t } ) )  i^i  z )  =  (/) )
3230, 31syl5eq 2520 . . . . . . . . . . 11  |-  ( ( z  e.  x  /\  t  =/=  z )  -> 
( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/) )
3332ex 434 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
t  =/=  z  -> 
( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/) ) )
3429, 33syl5 32 . . . . . . . . 9  |-  ( z  e.  x  ->  (
t  e.  ( x 
\  { z } )  ->  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  (/) ) )
3534ralrimiv 2876 . . . . . . . 8  |-  ( z  e.  x  ->  A. t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  (/) )
36 iuneq2 4342 . . . . . . . 8  |-  ( A. t  e.  ( x  \  { z } ) ( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/)  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( x  \  { z } )
(/) )
3735, 36syl 16 . . . . . . 7  |-  ( z  e.  x  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( x  \  { z } )
(/) )
38 iun0 4381 . . . . . . 7  |-  U_ t  e.  ( x  \  {
z } ) (/)  =  (/)
3937, 38syl6eq 2524 . . . . . 6  |-  ( z  e.  x  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  (/) )
4039uneq2d 3658 . . . . 5  |-  ( z  e.  x  ->  (
( z  i^i  (
z  \  U. (
x  \  { z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  { z } ) ) )  u.  (/) ) )
4128, 40syl5eq 2520 . . . 4  |-  ( z  e.  x  ->  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  (/) ) )
4216, 41eqtrd 2508 . . 3  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  (/) ) )
43 un0 3810 . . . 4  |-  ( ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )  u.  (/) )  =  ( z  i^i  (
z  \  U. (
x  \  { z } ) ) )
44 indif 3740 . . . 4  |-  ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  =  ( z 
\  U. ( x  \  { z } ) )
4543, 44eqtri 2496 . . 3  |-  ( ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )  u.  (/) )  =  ( z  \  U. ( x  \  { z } ) )
4642, 45syl6eq 2524 . 2  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  \  U. ( x  \  {
z } ) ) )
4710, 46syl5eq 2520 1  |-  ( z  e.  x  ->  (
z  i^i  U. A )  =  ( z  \  U. ( x  \  {
z } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   U_ciun 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-sn 4028  df-uni 4246  df-iun 4327
This theorem is referenced by:  kmlem12  8540
  Copyright terms: Public domain W3C validator