MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem10 Structured version   Unicode version

Theorem kmlem10 8326
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
Assertion
Ref Expression
kmlem10  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  ->  E. y A. z  e.  A  ph )
Distinct variable groups:    x, y,
z, w, u, t, h    y, A, z, w, h    ph, h
Allowed substitution hints:    ph( x, y, z, w, u, t)    A( x, u, t)

Proof of Theorem kmlem10
StepHypRef Expression
1 kmlem9.1 . . 3  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
21kmlem9 8325 . 2  |-  A. z  e.  A  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )
3 vex 2973 . . . . 5  |-  x  e. 
_V
43abrexex 6549 . . . 4  |-  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }  e.  _V
51, 4eqeltri 2511 . . 3  |-  A  e. 
_V
6 raleq 2915 . . . . 5  |-  ( h  =  A  ->  ( A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) ) )
76raleqbi1dv 2923 . . . 4  |-  ( h  =  A  ->  ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  A. z  e.  A  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) ) )
8 raleq 2915 . . . . 5  |-  ( h  =  A  ->  ( A. z  e.  h  ph  <->  A. z  e.  A  ph ) )
98exbidv 1680 . . . 4  |-  ( h  =  A  ->  ( E. y A. z  e.  h  ph  <->  E. y A. z  e.  A  ph ) )
107, 9imbi12d 320 . . 3  |-  ( h  =  A  ->  (
( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  <->  ( A. z  e.  A  A. w  e.  A  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  E. y A. z  e.  A  ph ) ) )
115, 10spcv 3061 . 2  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  -> 
( A. z  e.  A  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  A  ph ) )
122, 11mpi 17 1  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  ->  E. y A. z  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1367    = wceq 1369   E.wex 1586   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    \ cdif 3323    i^i cin 3325   (/)c0 3635   {csn 3875   U.cuni 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424
This theorem is referenced by:  kmlem13  8329
  Copyright terms: Public domain W3C validator