MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentopon Structured version   Unicode version

Theorem kgentopon 20017
Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
kgentopon  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  e.  (TopOn `  X ) )

Proof of Theorem kgentopon
Dummy variables  y  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4255 . . . . . . 7  |-  ( x 
C_  (𝑘Gen `  J )  ->  U. x  C_  U. (𝑘Gen `  J ) )
2 kgenval 20014 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  =  { x  e.  ~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) } )
3 ssrab2 3570 . . . . . . . . 9  |-  { x  e.  ~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) }  C_  ~P X
42, 3syl6eqss 3539 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  C_  ~P X
)
5 sspwuni 4401 . . . . . . . 8  |-  ( (𝑘Gen `  J )  C_  ~P X 
<-> 
U. (𝑘Gen `  J )  C_  X )
64, 5sylib 196 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  U. (𝑘Gen `  J )  C_  X
)
71, 6sylan9ssr 3503 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  ->  U. x  C_  X
)
8 iunin2 4379 . . . . . . . . . 10  |-  U_ y  e.  x  ( k  i^i  y )  =  ( k  i^i  U_ y  e.  x  y )
9 uniiun 4368 . . . . . . . . . . 11  |-  U. x  =  U_ y  e.  x  y
109ineq2i 3682 . . . . . . . . . 10  |-  ( k  i^i  U. x )  =  ( k  i^i  U_ y  e.  x  y )
11 incom 3676 . . . . . . . . . 10  |-  ( k  i^i  U. x )  =  ( U. x  i^i  k )
128, 10, 113eqtr2i 2478 . . . . . . . . 9  |-  U_ y  e.  x  ( k  i^i  y )  =  ( U. x  i^i  k
)
13 cmptop 19873 . . . . . . . . . . 11  |-  ( ( Jt  k )  e.  Comp  -> 
( Jt  k )  e. 
Top )
1413ad2antll 728 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  /\  ( k  e. 
~P X  /\  ( Jt  k )  e.  Comp ) )  ->  ( Jt  k )  e.  Top )
15 incom 3676 . . . . . . . . . . . 12  |-  ( y  i^i  k )  =  ( k  i^i  y
)
16 simplr 755 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  /\  ( k  e. 
~P X  /\  ( Jt  k )  e.  Comp ) )  ->  x  C_  (𝑘Gen `  J ) )
1716sselda 3489 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J
) )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  /\  y  e.  x )  ->  y  e.  (𝑘Gen `  J
) )
18 simplrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J
) )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  /\  y  e.  x )  ->  ( Jt  k )  e. 
Comp )
19 kgeni 20016 . . . . . . . . . . . . 13  |-  ( ( y  e.  (𝑘Gen `  J
)  /\  ( Jt  k
)  e.  Comp )  ->  ( y  i^i  k
)  e.  ( Jt  k ) )
2017, 18, 19syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J
) )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  /\  y  e.  x )  ->  ( y  i^i  k
)  e.  ( Jt  k ) )
2115, 20syl5eqelr 2536 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J
) )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  /\  y  e.  x )  ->  ( k  i^i  y
)  e.  ( Jt  k ) )
2221ralrimiva 2857 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  /\  ( k  e. 
~P X  /\  ( Jt  k )  e.  Comp ) )  ->  A. y  e.  x  ( k  i^i  y )  e.  ( Jt  k ) )
23 iunopn 19385 . . . . . . . . . 10  |-  ( ( ( Jt  k )  e. 
Top  /\  A. y  e.  x  ( k  i^i  y )  e.  ( Jt  k ) )  ->  U_ y  e.  x  ( k  i^i  y
)  e.  ( Jt  k ) )
2414, 22, 23syl2anc 661 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  /\  ( k  e. 
~P X  /\  ( Jt  k )  e.  Comp ) )  ->  U_ y  e.  x  ( k  i^i  y )  e.  ( Jt  k ) )
2512, 24syl5eqelr 2536 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  /\  ( k  e. 
~P X  /\  ( Jt  k )  e.  Comp ) )  ->  ( U. x  i^i  k
)  e.  ( Jt  k ) )
2625expr 615 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  /\  k  e.  ~P X )  ->  (
( Jt  k )  e. 
Comp  ->  ( U. x  i^i  k )  e.  ( Jt  k ) ) )
2726ralrimiva 2857 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  ->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( U. x  i^i  k
)  e.  ( Jt  k ) ) )
28 elkgen 20015 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  ( U. x  e.  (𝑘Gen `  J
)  <->  ( U. x  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( U. x  i^i  k )  e.  ( Jt  k ) ) ) ) )
2928adantr 465 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  ->  ( U. x  e.  (𝑘Gen `  J )  <->  ( U. x  C_  X  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( U. x  i^i  k )  e.  ( Jt  k ) ) ) ) )
307, 27, 29mpbir2and 922 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  x  C_  (𝑘Gen `  J ) )  ->  U. x  e.  (𝑘Gen `  J ) )
3130ex 434 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( x  C_  (𝑘Gen `  J )  ->  U. x  e.  (𝑘Gen `  J ) ) )
3231alrimiv 1706 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  A. x
( x  C_  (𝑘Gen `  J )  ->  U. x  e.  (𝑘Gen `  J ) ) )
33 inss1 3703 . . . . . 6  |-  ( x  i^i  y )  C_  x
34 elssuni 4264 . . . . . . . 8  |-  ( x  e.  (𝑘Gen `  J )  ->  x  C_  U. (𝑘Gen `  J
) )
3534ad2antrl 727 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  x  C_  U. (𝑘Gen `  J ) )
36 ssid 3508 . . . . . . . . . . . 12  |-  X  C_  X
3736a1i 11 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  C_  X
)
38 elpwi 4006 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ~P X  -> 
k  C_  X )
3938ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
k  C_  X )
40 dfss1 3688 . . . . . . . . . . . . . . 15  |-  ( k 
C_  X  <->  ( X  i^i  k )  =  k )
4139, 40sylib 196 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( X  i^i  k
)  =  k )
4238adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp )  ->  k  C_  X )
43 resttopon 19640 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  k  C_  X )  ->  ( Jt  k )  e.  (TopOn `  k ) )
4442, 43sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( Jt  k )  e.  (TopOn `  k )
)
45 toponmax 19407 . . . . . . . . . . . . . . 15  |-  ( ( Jt  k )  e.  (TopOn `  k )  ->  k  e.  ( Jt  k ) )
4644, 45syl 16 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
k  e.  ( Jt  k ) )
4741, 46eqeltrd 2531 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  (
k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( X  i^i  k
)  e.  ( Jt  k ) )
4847expr 615 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  k  e.  ~P X )  -> 
( ( Jt  k )  e.  Comp  ->  ( X  i^i  k )  e.  ( Jt  k ) ) )
4948ralrimiva 2857 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( X  i^i  k
)  e.  ( Jt  k ) ) )
50 elkgen 20015 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  ( X  e.  (𝑘Gen `  J )  <->  ( X  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( X  i^i  k
)  e.  ( Jt  k ) ) ) ) )
5137, 49, 50mpbir2and 922 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  (𝑘Gen
`  J ) )
52 elssuni 4264 . . . . . . . . . 10  |-  ( X  e.  (𝑘Gen `  J )  ->  X  C_  U. (𝑘Gen `  J
) )
5351, 52syl 16 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  C_  U. (𝑘Gen `  J ) )
5453, 6eqssd 3506 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. (𝑘Gen `  J ) )
5554adantr 465 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  X  =  U. (𝑘Gen `  J ) )
5635, 55sseqtr4d 3526 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  x  C_  X
)
5733, 56syl5ss 3500 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  ( x  i^i  y )  C_  X
)
58 inindir 3701 . . . . . . . 8  |-  ( ( x  i^i  y )  i^i  k )  =  ( ( x  i^i  k )  i^i  (
y  i^i  k )
)
5913ad2antll 728 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( Jt  k )  e. 
Top )
60 simplrl 761 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  ->  x  e.  (𝑘Gen `  J
) )
61 simprr 757 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( Jt  k )  e. 
Comp )
62 kgeni 20016 . . . . . . . . . 10  |-  ( ( x  e.  (𝑘Gen `  J
)  /\  ( Jt  k
)  e.  Comp )  ->  ( x  i^i  k
)  e.  ( Jt  k ) )
6360, 61, 62syl2anc 661 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( x  i^i  k
)  e.  ( Jt  k ) )
64 simplrr 762 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
y  e.  (𝑘Gen `  J
) )
6564, 61, 19syl2anc 661 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( y  i^i  k
)  e.  ( Jt  k ) )
66 inopn 19386 . . . . . . . . 9  |-  ( ( ( Jt  k )  e. 
Top  /\  ( x  i^i  k )  e.  ( Jt  k )  /\  (
y  i^i  k )  e.  ( Jt  k ) )  ->  ( ( x  i^i  k )  i^i  ( y  i^i  k
) )  e.  ( Jt  k ) )
6759, 63, 65, 66syl3anc 1229 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( ( x  i^i  k )  i^i  (
y  i^i  k )
)  e.  ( Jt  k ) )
6858, 67syl5eqel 2535 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  ( k  e.  ~P X  /\  ( Jt  k )  e. 
Comp ) )  -> 
( ( x  i^i  y )  i^i  k
)  e.  ( Jt  k ) )
6968expr 615 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  /\  k  e. 
~P X )  -> 
( ( Jt  k )  e.  Comp  ->  ( ( x  i^i  y )  i^i  k )  e.  ( Jt  k ) ) )
7069ralrimiva 2857 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( ( x  i^i  y )  i^i  k
)  e.  ( Jt  k ) ) )
71 elkgen 20015 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  ( (
x  i^i  y )  e.  (𝑘Gen `  J )  <->  ( (
x  i^i  y )  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( ( x  i^i  y )  i^i  k
)  e.  ( Jt  k ) ) ) ) )
7271adantr 465 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  ( (
x  i^i  y )  e.  (𝑘Gen `  J )  <->  ( (
x  i^i  y )  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( ( x  i^i  y )  i^i  k
)  e.  ( Jt  k ) ) ) ) )
7357, 70, 72mpbir2and 922 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  e.  (𝑘Gen `  J
)  /\  y  e.  (𝑘Gen
`  J ) ) )  ->  ( x  i^i  y )  e.  (𝑘Gen `  J ) )
7473ralrimivva 2864 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  A. x  e.  (𝑘Gen `  J ) A. y  e.  (𝑘Gen `  J
) ( x  i^i  y )  e.  (𝑘Gen `  J ) )
75 fvex 5866 . . . 4  |-  (𝑘Gen `  J
)  e.  _V
76 istopg 19382 . . . 4  |-  ( (𝑘Gen `  J )  e.  _V  ->  ( (𝑘Gen `  J )  e. 
Top 
<->  ( A. x ( x  C_  (𝑘Gen `  J
)  ->  U. x  e.  (𝑘Gen `  J ) )  /\  A. x  e.  (𝑘Gen `  J ) A. y  e.  (𝑘Gen `  J
) ( x  i^i  y )  e.  (𝑘Gen `  J ) ) ) )
7775, 76ax-mp 5 . . 3  |-  ( (𝑘Gen `  J )  e.  Top  <->  ( A. x ( x  C_  (𝑘Gen
`  J )  ->  U. x  e.  (𝑘Gen `  J ) )  /\  A. x  e.  (𝑘Gen `  J
) A. y  e.  (𝑘Gen `  J ) ( x  i^i  y )  e.  (𝑘Gen `  J ) ) )
7832, 74, 77sylanbrc 664 . 2  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  e.  Top )
79 istopon 19404 . 2  |-  ( (𝑘Gen `  J )  e.  (TopOn `  X )  <->  ( (𝑘Gen `  J )  e.  Top  /\  X  =  U. (𝑘Gen `  J ) ) )
8078, 54, 79sylanbrc 664 1  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  e.  (TopOn `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1381    = wceq 1383    e. wcel 1804   A.wral 2793   {crab 2797   _Vcvv 3095    i^i cin 3460    C_ wss 3461   ~Pcpw 3997   U.cuni 4234   U_ciun 4315   ` cfv 5578  (class class class)co 6281   ↾t crest 14800   Topctop 19372  TopOnctopon 19373   Compccmp 19864  𝑘Genckgen 20012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873  df-rest 14802  df-topgen 14823  df-top 19377  df-bases 19379  df-topon 19380  df-cmp 19865  df-kgen 20013
This theorem is referenced by:  kgenuni  20018  kgenftop  20019  kgenhaus  20023  kgenidm  20026  kgencn  20035  kgencn3  20037  kgen2cn  20038
  Copyright terms: Public domain W3C validator