MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn3 Structured version   Unicode version

Theorem kgencn3 19031
Description: The set of continuous functions from  J to  K is unaffected by k-ification of  K, if  J is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  =  ( J  Cn  (𝑘Gen `  K ) ) )

Proof of Theorem kgencn3
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . . . . 7  |-  U. J  =  U. J
2 eqid 2441 . . . . . . 7  |-  U. K  =  U. K
31, 2cnf 18750 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> U. K
)
43adantl 463 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f : U. J
--> U. K )
5 cnvimass 5186 . . . . . . . . 9  |-  ( `' f " x ) 
C_  dom  f
6 fdm 5560 . . . . . . . . . . 11  |-  ( f : U. J --> U. K  ->  dom  f  =  U. J )
74, 6syl 16 . . . . . . . . . 10  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  dom  f  =  U. J )
87adantr 462 . . . . . . . . 9  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  dom  f  =  U. J )
95, 8syl5sseq 3401 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  C_  U. J )
10 cnvresima 5324 . . . . . . . . . . . 12  |-  ( `' ( f  |`  y
) " ( x  i^i  ( f "
y ) ) )  =  ( ( `' f " ( x  i^i  ( f "
y ) ) )  i^i  y )
114ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  f : U. J --> U. K
)
12 ffun 5558 . . . . . . . . . . . . . . 15  |-  ( f : U. J --> U. K  ->  Fun  f )
13 inpreima 5827 . . . . . . . . . . . . . . 15  |-  ( Fun  f  ->  ( `' f " ( x  i^i  ( f " y
) ) )  =  ( ( `' f
" x )  i^i  ( `' f "
( f " y
) ) ) )
1411, 12, 133syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' f " (
x  i^i  ( f " y ) ) )  =  ( ( `' f " x
)  i^i  ( `' f " ( f "
y ) ) ) )
1514ineq1d 3548 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
( x  i^i  (
f " y ) ) )  i^i  y
)  =  ( ( ( `' f "
x )  i^i  ( `' f " (
f " y ) ) )  i^i  y
) )
16 in32 3559 . . . . . . . . . . . . . 14  |-  ( ( ( `' f "
x )  i^i  ( `' f " (
f " y ) ) )  i^i  y
)  =  ( ( ( `' f "
x )  i^i  y
)  i^i  ( `' f " ( f "
y ) ) )
17 ssrin 3572 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' f " x
)  C_  dom  f  -> 
( ( `' f
" x )  i^i  y )  C_  ( dom  f  i^i  y
) )
185, 17ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( `' f " x
)  i^i  y )  C_  ( dom  f  i^i  y )
19 dminss 5248 . . . . . . . . . . . . . . . . 17  |-  ( dom  f  i^i  y ) 
C_  ( `' f
" ( f "
y ) )
2018, 19sstri 3362 . . . . . . . . . . . . . . . 16  |-  ( ( `' f " x
)  i^i  y )  C_  ( `' f "
( f " y
) )
2120a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
x )  i^i  y
)  C_  ( `' f " ( f "
y ) ) )
22 df-ss 3339 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f "
x )  i^i  y
)  C_  ( `' f " ( f "
y ) )  <->  ( (
( `' f "
x )  i^i  y
)  i^i  ( `' f " ( f "
y ) ) )  =  ( ( `' f " x )  i^i  y ) )
2321, 22sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( ( `' f
" x )  i^i  y )  i^i  ( `' f " (
f " y ) ) )  =  ( ( `' f "
x )  i^i  y
) )
2416, 23syl5eq 2485 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( ( `' f
" x )  i^i  ( `' f "
( f " y
) ) )  i^i  y )  =  ( ( `' f "
x )  i^i  y
) )
2515, 24eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
( x  i^i  (
f " y ) ) )  i^i  y
)  =  ( ( `' f " x
)  i^i  y )
)
2610, 25syl5eq 2485 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  =  ( ( `' f " x
)  i^i  y )
)
27 simpr 458 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f  e.  ( J  Cn  K ) )
2827ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  f  e.  ( J  Cn  K
) )
29 elpwi 3866 . . . . . . . . . . . . . . 15  |-  ( y  e.  ~P U. J  ->  y  C_  U. J )
3029ad2antrl 722 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  y  C_ 
U. J )
311cnrest 18789 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( J  Cn  K )  /\  y  C_  U. J )  ->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  K ) )
3228, 30, 31syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f  |`  y )  e.  ( ( Jt  y )  Cn  K ) )
33 simpr 458 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  e.  Top )
3433ad3antrrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  K  e.  Top )
352toptopon 18438 . . . . . . . . . . . . . . 15  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3634, 35sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  K  e.  (TopOn `  U. K ) )
37 df-ima 4849 . . . . . . . . . . . . . . . 16  |-  ( f
" y )  =  ran  ( f  |`  y )
3837eqimss2i 3408 . . . . . . . . . . . . . . 15  |-  ran  (
f  |`  y )  C_  ( f " y
)
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ran  ( f  |`  y
)  C_  ( f " y ) )
40 imassrn 5177 . . . . . . . . . . . . . . 15  |-  ( f
" y )  C_  ran  f
41 frn 5562 . . . . . . . . . . . . . . . 16  |-  ( f : U. J --> U. K  ->  ran  f  C_  U. K
)
4211, 41syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ran  f  C_  U. K )
4340, 42syl5ss 3364 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f " y ) 
C_  U. K )
44 cnrest2 18790 . . . . . . . . . . . . . 14  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  ( f  |`  y
)  C_  ( f " y )  /\  ( f " y
)  C_  U. K )  ->  ( ( f  |`  y )  e.  ( ( Jt  y )  Cn  K )  <->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f "
y ) ) ) ) )
4536, 39, 43, 44syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( f  |`  y
)  e.  ( ( Jt  y )  Cn  K
)  <->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f "
y ) ) ) ) )
4632, 45mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f
" y ) ) ) )
47 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  x  e.  (𝑘Gen `  K ) )
48 simprr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( Jt  y )  e.  Comp )
49 imacmp 18900 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( J  Cn  K )  /\  ( Jt  y )  e. 
Comp )  ->  ( Kt  ( f " y
) )  e.  Comp )
5028, 48, 49syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( Kt  ( f " y
) )  e.  Comp )
51 kgeni 19010 . . . . . . . . . . . . 13  |-  ( ( x  e.  (𝑘Gen `  K
)  /\  ( Kt  (
f " y ) )  e.  Comp )  ->  ( x  i^i  (
f " y ) )  e.  ( Kt  ( f " y ) ) )
5247, 50, 51syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
x  i^i  ( f " y ) )  e.  ( Kt  ( f
" y ) ) )
53 cnima 18769 . . . . . . . . . . . 12  |-  ( ( ( f  |`  y
)  e.  ( ( Jt  y )  Cn  ( Kt  ( f " y
) ) )  /\  ( x  i^i  (
f " y ) )  e.  ( Kt  ( f " y ) ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  e.  ( Jt  y ) )
5446, 52, 53syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  e.  ( Jt  y ) )
5526, 54eqeltrrd 2516 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
x )  i^i  y
)  e.  ( Jt  y ) )
5655expr 612 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  y  e.  ~P U. J )  ->  (
( Jt  y )  e. 
Comp  ->  ( ( `' f " x )  i^i  y )  e.  ( Jt  y ) ) )
5756ralrimiva 2797 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) )
58 kgentop 19015 . . . . . . . . . . 11  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
5958ad3antrrr 724 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  J  e.  Top )
601toptopon 18438 . . . . . . . . . 10  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
6159, 60sylib 196 . . . . . . . . 9  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  J  e.  (TopOn `  U. J ) )
62 elkgen 19009 . . . . . . . . 9  |-  ( J  e.  (TopOn `  U. J )  ->  (
( `' f "
x )  e.  (𝑘Gen `  J )  <->  ( ( `' f " x
)  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) ) ) )
6361, 62syl 16 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( ( `' f " x )  e.  (𝑘Gen `  J )  <->  ( ( `' f " x
)  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) ) ) )
649, 57, 63mpbir2and 908 . . . . . . 7  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  e.  (𝑘Gen `  J ) )
65 kgenidm 19020 . . . . . . . 8  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  =  J )
6665ad3antrrr 724 . . . . . . 7  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  (𝑘Gen `  J )  =  J )
6764, 66eleqtrd 2517 . . . . . 6  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  e.  J )
6867ralrimiva 2797 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J )
6958, 60sylib 196 . . . . . . 7  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  (TopOn `  U. J ) )
70 kgentopon 19011 . . . . . . . 8  |-  ( K  e.  (TopOn `  U. K )  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
7135, 70sylbi 195 . . . . . . 7  |-  ( K  e.  Top  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
72 iscn 18739 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )  ->  ( f  e.  ( J  Cn  (𝑘Gen `  K ) )  <->  ( f : U. J --> U. K  /\  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J ) ) )
7369, 71, 72syl2an 474 . . . . . 6  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (
f  e.  ( J  Cn  (𝑘Gen `  K ) )  <-> 
( f : U. J
--> U. K  /\  A. x  e.  (𝑘Gen `  K
) ( `' f
" x )  e.  J ) ) )
7473adantr 462 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  ( f  e.  ( J  Cn  (𝑘Gen `  K ) )  <->  ( f : U. J --> U. K  /\  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J ) ) )
754, 68, 74mpbir2and 908 . . . 4  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f  e.  ( J  Cn  (𝑘Gen `  K
) ) )
7675ex 434 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  (𝑘Gen `  K ) ) ) )
7776ssrdv 3359 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  C_  ( J  Cn  (𝑘Gen `  K ) ) )
7871adantl 463 . . . 4  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
79 toponcom 18435 . . . 4  |-  ( ( K  e.  Top  /\  (𝑘Gen
`  K )  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. (𝑘Gen `  K
) ) )
8033, 78, 79syl2anc 656 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  e.  (TopOn `  U. (𝑘Gen `  K
) ) )
81 kgenss 19016 . . . 4  |-  ( K  e.  Top  ->  K  C_  (𝑘Gen `  K ) )
8281adantl 463 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  C_  (𝑘Gen `  K ) )
83 eqid 2441 . . . 4  |-  U. (𝑘Gen `  K )  =  U. (𝑘Gen
`  K )
8483cnss2 18781 . . 3  |-  ( ( K  e.  (TopOn `  U. (𝑘Gen `  K ) )  /\  K  C_  (𝑘Gen `  K ) )  -> 
( J  Cn  (𝑘Gen `  K ) )  C_  ( J  Cn  K
) )
8580, 82, 84syl2anc 656 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  (𝑘Gen `  K ) ) 
C_  ( J  Cn  K ) )
8677, 85eqssd 3370 1  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  =  ( J  Cn  (𝑘Gen `  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   U.cuni 4088   `'ccnv 4835   dom cdm 4836   ran crn 4837    |` cres 4838   "cima 4839   Fun wfun 5409   -->wf 5411   ` cfv 5415  (class class class)co 6090   ↾t crest 14355   Topctop 18398  TopOnctopon 18399    Cn ccn 18728   Compccmp 18889  𝑘Genckgen 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-fin 7310  df-fi 7657  df-rest 14357  df-topgen 14378  df-top 18403  df-bases 18405  df-topon 18406  df-cn 18731  df-cmp 18890  df-kgen 19007
This theorem is referenced by:  kgen2cn  19032  txkgen  19125  qtopkgen  19183
  Copyright terms: Public domain W3C validator