MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Structured version   Unicode version

Theorem kgencn2 20559
Description: A function  F : J
--> K from a compactly generated space is continuous iff for all compact spaces  z and continuous  g : z --> J, the composite  F  o.  g : z --> K is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( (𝑘Gen `  J )  Cn  K )  <->  ( F : X --> Y  /\  A. z  e.  Comp  A. g  e.  ( z  Cn  J
) ( F  o.  g )  e.  ( z  Cn  K ) ) ) )
Distinct variable groups:    z, g, F    g, J, z    g, K, z    g, X, z   
g, Y, z

Proof of Theorem kgencn2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 kgencn 20558 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( (𝑘Gen `  J )  Cn  K )  <->  ( F : X --> Y  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) ) ) ) )
2 rncmp 20398 . . . . . . . 8  |-  ( ( z  e.  Comp  /\  g  e.  ( z  Cn  J
) )  ->  ( Jt  ran  g )  e.  Comp )
32adantl 467 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( Jt  ran  g )  e.  Comp )
4 simprr 764 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  g  e.  ( z  Cn  J
) )
5 eqid 2422 . . . . . . . . . . . 12  |-  U. z  =  U. z
6 eqid 2422 . . . . . . . . . . . 12  |-  U. J  =  U. J
75, 6cnf 20249 . . . . . . . . . . 11  |-  ( g  e.  ( z  Cn  J )  ->  g : U. z --> U. J
)
8 frn 5749 . . . . . . . . . . 11  |-  ( g : U. z --> U. J  ->  ran  g  C_  U. J )
94, 7, 83syl 18 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  C_  U. J )
10 toponuni 19929 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1110ad3antrrr 734 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  X  =  U. J )
129, 11sseqtr4d 3501 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  C_  X )
13 vex 3084 . . . . . . . . . . 11  |-  g  e. 
_V
1413rnex 6738 . . . . . . . . . 10  |-  ran  g  e.  _V
1514elpw 3985 . . . . . . . . 9  |-  ( ran  g  e.  ~P X  <->  ran  g  C_  X )
1612, 15sylibr 215 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  e.  ~P X
)
17 oveq2 6310 . . . . . . . . . . 11  |-  ( k  =  ran  g  -> 
( Jt  k )  =  ( Jt  ran  g ) )
1817eleq1d 2491 . . . . . . . . . 10  |-  ( k  =  ran  g  -> 
( ( Jt  k )  e.  Comp  <->  ( Jt  ran  g
)  e.  Comp )
)
19 reseq2 5116 . . . . . . . . . . 11  |-  ( k  =  ran  g  -> 
( F  |`  k
)  =  ( F  |`  ran  g ) )
2017oveq1d 6317 . . . . . . . . . . 11  |-  ( k  =  ran  g  -> 
( ( Jt  k )  Cn  K )  =  ( ( Jt  ran  g
)  Cn  K ) )
2119, 20eleq12d 2504 . . . . . . . . . 10  |-  ( k  =  ran  g  -> 
( ( F  |`  k )  e.  ( ( Jt  k )  Cn  K )  <->  ( F  |` 
ran  g )  e.  ( ( Jt  ran  g
)  Cn  K ) ) )
2218, 21imbi12d 321 . . . . . . . . 9  |-  ( k  =  ran  g  -> 
( ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  <-> 
( ( Jt  ran  g
)  e.  Comp  ->  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K
) ) ) )
2322rspcv 3178 . . . . . . . 8  |-  ( ran  g  e.  ~P X  ->  ( A. k  e. 
~P  X ( ( Jt  k )  e.  Comp  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) )  ->  (
( Jt  ran  g )  e. 
Comp  ->  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K ) ) ) )
2416, 23syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  ( ( Jt  ran  g )  e.  Comp  -> 
( F  |`  ran  g
)  e.  ( ( Jt 
ran  g )  Cn  K ) ) ) )
253, 24mpid 42 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K ) ) )
26 simplll 766 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  J  e.  (TopOn `  X )
)
27 ssid 3483 . . . . . . . . . . 11  |-  ran  g  C_ 
ran  g
2827a1i 11 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  C_  ran  g )
29 cnrest2 20289 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  ran  g  C_  ran  g  /\  ran  g  C_  X )  ->  ( g  e.  ( z  Cn  J
)  <->  g  e.  ( z  Cn  ( Jt  ran  g ) ) ) )
3026, 28, 12, 29syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  (
g  e.  ( z  Cn  J )  <->  g  e.  ( z  Cn  ( Jt  ran  g ) ) ) )
314, 30mpbid 213 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  g  e.  ( z  Cn  ( Jt  ran  g ) ) )
32 cnco 20269 . . . . . . . . 9  |-  ( ( g  e.  ( z  Cn  ( Jt  ran  g
) )  /\  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K
) )  ->  (
( F  |`  ran  g
)  o.  g )  e.  ( z  Cn  K ) )
3332ex 435 . . . . . . . 8  |-  ( g  e.  ( z  Cn  ( Jt  ran  g ) )  ->  ( ( F  |`  ran  g )  e.  ( ( Jt  ran  g
)  Cn  K )  ->  ( ( F  |`  ran  g )  o.  g )  e.  ( z  Cn  K ) ) )
3431, 33syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  (
( F  |`  ran  g
)  e.  ( ( Jt 
ran  g )  Cn  K )  ->  (
( F  |`  ran  g
)  o.  g )  e.  ( z  Cn  K ) ) )
35 cores 5354 . . . . . . . . 9  |-  ( ran  g  C_  ran  g  -> 
( ( F  |`  ran  g )  o.  g
)  =  ( F  o.  g ) )
3627, 35ax-mp 5 . . . . . . . 8  |-  ( ( F  |`  ran  g )  o.  g )  =  ( F  o.  g
)
3736eleq1i 2499 . . . . . . 7  |-  ( ( ( F  |`  ran  g
)  o.  g )  e.  ( z  Cn  K )  <->  ( F  o.  g )  e.  ( z  Cn  K ) )
3834, 37syl6ib 229 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  (
( F  |`  ran  g
)  e.  ( ( Jt 
ran  g )  Cn  K )  ->  ( F  o.  g )  e.  ( z  Cn  K
) ) )
3925, 38syld 45 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  ( F  o.  g )  e.  ( z  Cn  K ) ) )
4039ralrimdvva 2849 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K ) ) )
41 oveq1 6309 . . . . . . . . 9  |-  ( z  =  ( Jt  k )  ->  ( z  Cn  J )  =  ( ( Jt  k )  Cn  J ) )
42 oveq1 6309 . . . . . . . . . 10  |-  ( z  =  ( Jt  k )  ->  ( z  Cn  K )  =  ( ( Jt  k )  Cn  K ) )
4342eleq2d 2492 . . . . . . . . 9  |-  ( z  =  ( Jt  k )  ->  ( ( F  o.  g )  e.  ( z  Cn  K
)  <->  ( F  o.  g )  e.  ( ( Jt  k )  Cn  K ) ) )
4441, 43raleqbidv 3039 . . . . . . . 8  |-  ( z  =  ( Jt  k )  ->  ( A. g  e.  ( z  Cn  J
) ( F  o.  g )  e.  ( z  Cn  K )  <->  A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K ) ) )
4544rspcv 3178 . . . . . . 7  |-  ( ( Jt  k )  e.  Comp  -> 
( A. z  e. 
Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g
)  e.  ( z  Cn  K )  ->  A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K ) ) )
46 elpwi 3988 . . . . . . . . . . . 12  |-  ( k  e.  ~P X  -> 
k  C_  X )
4746adantl 467 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  k  C_  X )
4847resabs1d 5150 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (
(  _I  |`  X )  |`  k )  =  (  _I  |`  k )
)
49 idcn 20260 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
5049ad3antrrr 734 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (  _I  |`  X )  e.  ( J  Cn  J
) )
5110ad3antrrr 734 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  X  =  U. J )
5247, 51sseqtrd 3500 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  k  C_ 
U. J )
536cnrest 20288 . . . . . . . . . . 11  |-  ( ( (  _I  |`  X )  e.  ( J  Cn  J )  /\  k  C_ 
U. J )  -> 
( (  _I  |`  X )  |`  k )  e.  ( ( Jt  k )  Cn  J ) )
5450, 52, 53syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (
(  _I  |`  X )  |`  k )  e.  ( ( Jt  k )  Cn  J ) )
5548, 54eqeltrrd 2511 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (  _I  |`  k )  e.  ( ( Jt  k )  Cn  J ) )
56 coeq2 5009 . . . . . . . . . . 11  |-  ( g  =  (  _I  |`  k
)  ->  ( F  o.  g )  =  ( F  o.  (  _I  |`  k ) ) )
5756eleq1d 2491 . . . . . . . . . 10  |-  ( g  =  (  _I  |`  k
)  ->  ( ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  <->  ( F  o.  (  _I  |`  k
) )  e.  ( ( Jt  k )  Cn  K ) ) )
5857rspcv 3178 . . . . . . . . 9  |-  ( (  _I  |`  k )  e.  ( ( Jt  k )  Cn  J )  -> 
( A. g  e.  ( ( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  ->  ( F  o.  (  _I  |`  k ) )  e.  ( ( Jt  k )  Cn  K
) ) )
5955, 58syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  ( A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  -> 
( F  o.  (  _I  |`  k ) )  e.  ( ( Jt  k )  Cn  K ) ) )
60 coires1 5369 . . . . . . . . 9  |-  ( F  o.  (  _I  |`  k
) )  =  ( F  |`  k )
6160eleq1i 2499 . . . . . . . 8  |-  ( ( F  o.  (  _I  |`  k ) )  e.  ( ( Jt  k )  Cn  K )  <->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )
6259, 61syl6ib 229 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  ( A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) ) )
6345, 62syl9r 74 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (
( Jt  k )  e. 
Comp  ->  ( A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g
)  e.  ( z  Cn  K )  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) ) ) )
6463com23 81 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  ( A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K )  ->  (
( Jt  k )  e. 
Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) ) ) )
6564ralrimdva 2843 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K )  ->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) ) ) )
6640, 65impbid 193 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  <->  A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K ) ) )
6766pm5.32da 645 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) ) )  <-> 
( F : X --> Y  /\  A. z  e. 
Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g
)  e.  ( z  Cn  K ) ) ) )
681, 67bitrd 256 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( (𝑘Gen `  J )  Cn  K )  <->  ( F : X --> Y  /\  A. z  e.  Comp  A. g  e.  ( z  Cn  J
) ( F  o.  g )  e.  ( z  Cn  K ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775    C_ wss 3436   ~Pcpw 3979   U.cuni 4216    _I cid 4760   ran crn 4851    |` cres 4852    o. ccom 4854   -->wf 5594   ` cfv 5598  (class class class)co 6302   ↾t crest 15307  TopOnctopon 19905    Cn ccn 20227   Compccmp 20388  𝑘Genckgen 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-fin 7578  df-fi 7928  df-rest 15309  df-topgen 15330  df-top 19908  df-bases 19909  df-topon 19910  df-cn 20230  df-cmp 20389  df-kgen 20536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator