MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencmp Structured version   Unicode version

Theorem kgencmp 20215
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgencmp  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K )  =  ( (𝑘Gen `  J
)t 
K ) )

Proof of Theorem kgencmp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 kgenftop 20210 . . . 4  |-  ( J  e.  Top  ->  (𝑘Gen `  J )  e.  Top )
21adantr 463 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  (𝑘Gen `  J )  e. 
Top )
3 kgenss 20213 . . . 4  |-  ( J  e.  Top  ->  J  C_  (𝑘Gen `  J ) )
43adantr 463 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  J  C_  (𝑘Gen `  J ) )
5 ssrest 19847 . . 3  |-  ( ( (𝑘Gen `  J )  e. 
Top  /\  J  C_  (𝑘Gen `  J ) )  -> 
( Jt  K )  C_  (
(𝑘Gen `  J )t  K ) )
62, 4, 5syl2anc 659 . 2  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K ) 
C_  ( (𝑘Gen `  J
)t 
K ) )
7 cmptop 20065 . . . . . 6  |-  ( ( Jt  K )  e.  Comp  -> 
( Jt  K )  e.  Top )
87adantl 464 . . . . 5  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K )  e.  Top )
9 restrcl 19828 . . . . . 6  |-  ( ( Jt  K )  e.  Top  ->  ( J  e.  _V  /\  K  e.  _V )
)
109simprd 461 . . . . 5  |-  ( ( Jt  K )  e.  Top  ->  K  e.  _V )
118, 10syl 16 . . . 4  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  K  e.  _V )
12 restval 14919 . . . 4  |-  ( ( (𝑘Gen `  J )  e. 
Top  /\  K  e.  _V )  ->  ( (𝑘Gen `  J )t  K )  =  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) )
132, 11, 12syl2anc 659 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( (𝑘Gen `  J
)t 
K )  =  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) )
14 simpr 459 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  /\  x  e.  (𝑘Gen `  J ) )  ->  x  e.  (𝑘Gen `  J
) )
15 simplr 753 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  /\  x  e.  (𝑘Gen `  J ) )  -> 
( Jt  K )  e.  Comp )
16 kgeni 20207 . . . . . 6  |-  ( ( x  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( x  i^i  K
)  e.  ( Jt  K ) )
1714, 15, 16syl2anc 659 . . . . 5  |-  ( ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  /\  x  e.  (𝑘Gen `  J ) )  -> 
( x  i^i  K
)  e.  ( Jt  K ) )
18 eqid 2454 . . . . 5  |-  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) )  =  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) )
1917, 18fmptd 6031 . . . 4  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) : (𝑘Gen `  J
) --> ( Jt  K ) )
20 frn 5719 . . . 4  |-  ( ( x  e.  (𝑘Gen `  J
)  |->  ( x  i^i 
K ) ) : (𝑘Gen `  J ) --> ( Jt  K )  ->  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) 
C_  ( Jt  K ) )
2119, 20syl 16 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) )  C_  ( Jt  K
) )
2213, 21eqsstrd 3523 . 2  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( (𝑘Gen `  J
)t 
K )  C_  ( Jt  K ) )
236, 22eqssd 3506 1  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K )  =  ( (𝑘Gen `  J
)t 
K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    i^i cin 3460    C_ wss 3461    |-> cmpt 4497   ran crn 4989   -->wf 5566   ` cfv 5570  (class class class)co 6270   ↾t crest 14913   Topctop 19564   Compccmp 20056  𝑘Genckgen 20203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-er 7303  df-en 7510  df-fin 7513  df-fi 7863  df-rest 14915  df-topgen 14936  df-top 19569  df-bases 19571  df-topon 19572  df-cmp 20057  df-kgen 20204
This theorem is referenced by:  kgencmp2  20216  kgenidm  20217
  Copyright terms: Public domain W3C validator