MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2ss Structured version   Unicode version

Theorem kgen2ss 20348
Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2ss  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (𝑘Gen `  J )  C_  (𝑘Gen
`  K ) )

Proof of Theorem kgen2ss
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 997 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  J  e.  (TopOn `  X ) )
2 elpwi 3964 . . . . . . . . 9  |-  ( k  e.  ~P X  -> 
k  C_  X )
3 resttopon 19955 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  k  C_  X )  ->  ( Jt  k )  e.  (TopOn `  k ) )
41, 2, 3syl2an 475 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Jt  k )  e.  (TopOn `  k ) )
5 simp2 998 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  K  e.  (TopOn `  X ) )
6 resttopon 19955 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  X )  /\  k  C_  X )  ->  ( Kt  k )  e.  (TopOn `  k ) )
75, 2, 6syl2an 475 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Kt  k )  e.  (TopOn `  k ) )
8 toponuni 19720 . . . . . . . . . 10  |-  ( ( Kt  k )  e.  (TopOn `  k )  ->  k  =  U. ( Kt  k ) )
97, 8syl 17 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  k  =  U. ( Kt  k ) )
109fveq2d 5853 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (TopOn `  k )  =  (TopOn `  U. ( Kt  k ) ) )
114, 10eleqtrd 2492 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) ) )
12 simpl2 1001 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  K  e.  (TopOn `  X )
)
13 topontop 19719 . . . . . . . . 9  |-  ( K  e.  (TopOn `  X
)  ->  K  e.  Top )
1412, 13syl 17 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  K  e.  Top )
15 simpl3 1002 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  J  C_  K )
16 ssrest 19970 . . . . . . . 8  |-  ( ( K  e.  Top  /\  J  C_  K )  -> 
( Jt  k )  C_  ( Kt  k ) )
1714, 15, 16syl2anc 659 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Jt  k )  C_  ( Kt  k ) )
18 eqid 2402 . . . . . . . . . 10  |-  U. ( Kt  k )  =  U. ( Kt  k )
1918sscmp 20198 . . . . . . . . 9  |-  ( ( ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) )  /\  ( Kt  k )  e.  Comp  /\  ( Jt  k )  C_  ( Kt  k ) )  ->  ( Jt  k )  e.  Comp )
20193com23 1203 . . . . . . . 8  |-  ( ( ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) )  /\  ( Jt  k )  C_  ( Kt  k )  /\  ( Kt  k )  e.  Comp )  ->  ( Jt  k )  e.  Comp )
21203expia 1199 . . . . . . 7  |-  ( ( ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) )  /\  ( Jt  k )  C_  ( Kt  k ) )  -> 
( ( Kt  k )  e.  Comp  ->  ( Jt  k )  e.  Comp )
)
2211, 17, 21syl2anc 659 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (
( Kt  k )  e. 
Comp  ->  ( Jt  k )  e.  Comp ) )
2317sseld 3441 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (
( x  i^i  k
)  e.  ( Jt  k )  ->  ( x  i^i  k )  e.  ( Kt  k ) ) )
2422, 23imim12d 74 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) )  ->  ( ( Kt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Kt  k ) ) ) )
2524ralimdva 2812 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) )  ->  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) )
2625anim2d 563 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ( x 
C_  X  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) )  ->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) ) )
27 elkgen 20329 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( x  e.  (𝑘Gen `  J )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) ) ) ) )
28273ad2ant1 1018 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( x  e.  (𝑘Gen `  J )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) ) ) ) )
29 elkgen 20329 . . . 4  |-  ( K  e.  (TopOn `  X
)  ->  ( x  e.  (𝑘Gen `  K )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) ) )
30293ad2ant2 1019 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( x  e.  (𝑘Gen `  K )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) ) )
3126, 28, 303imtr4d 268 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( x  e.  (𝑘Gen `  J )  ->  x  e.  (𝑘Gen `  K
) ) )
3231ssrdv 3448 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (𝑘Gen `  J )  C_  (𝑘Gen
`  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754    i^i cin 3413    C_ wss 3414   ~Pcpw 3955   U.cuni 4191   ` cfv 5569  (class class class)co 6278   ↾t crest 15035   Topctop 19686  TopOnctopon 19687   Compccmp 20179  𝑘Genckgen 20326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-oadd 7171  df-er 7348  df-en 7555  df-fin 7558  df-fi 7905  df-rest 15037  df-topgen 15058  df-top 19691  df-bases 19693  df-topon 19694  df-cmp 20180  df-kgen 20327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator