Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Unicode version

Theorem keridl 30324
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1  |-  G  =  ( 1st `  S
)
keridl.2  |-  Z  =  (GId `  G )
Assertion
Ref Expression
keridl  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( `' F " { Z }
)  e.  ( Idl `  R ) )

Proof of Theorem keridl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2 eqid 2467 . . . 4  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
3 keridl.1 . . . 4  |-  G  =  ( 1st `  S
)
4 eqid 2467 . . . 4  |-  ran  G  =  ran  G
51, 2, 3, 4rngohomf 30264 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  F : ran  ( 1st `  R
) --> ran  G )
6 cnvimass 5362 . . . 4  |-  ( `' F " { Z } )  C_  dom  F
7 fdm 5740 . . . 4  |-  ( F : ran  ( 1st `  R ) --> ran  G  ->  dom  F  =  ran  ( 1st `  R ) )
86, 7syl5sseq 3557 . . 3  |-  ( F : ran  ( 1st `  R ) --> ran  G  ->  ( `' F " { Z } )  C_  ran  ( 1st `  R
) )
95, 8syl 16 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( `' F " { Z }
)  C_  ran  ( 1st `  R ) )
10 eqid 2467 . . . . 5  |-  (GId `  ( 1st `  R ) )  =  (GId `  ( 1st `  R ) )
111, 2, 10rngo0cl 25191 . . . 4  |-  ( R  e.  RingOps  ->  (GId `  ( 1st `  R ) )  e.  ran  ( 1st `  R ) )
12113ad2ant1 1017 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  (GId `  ( 1st `  R ) )  e.  ran  ( 1st `  R ) )
13 keridl.2 . . . . 5  |-  Z  =  (GId `  G )
141, 10, 3, 13rngohom0 30270 . . . 4  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F `  (GId `  ( 1st `  R ) ) )  =  Z )
15 fvex 5881 . . . . 5  |-  ( F `
 (GId `  ( 1st `  R ) ) )  e.  _V
1615elsnc 4056 . . . 4  |-  ( ( F `  (GId `  ( 1st `  R ) ) )  e.  { Z }  <->  ( F `  (GId `  ( 1st `  R
) ) )  =  Z )
1714, 16sylibr 212 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F `  (GId `  ( 1st `  R ) ) )  e.  { Z }
)
18 ffn 5736 . . . 4  |-  ( F : ran  ( 1st `  R ) --> ran  G  ->  F  Fn  ran  ( 1st `  R ) )
19 elpreima 6007 . . . 4  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
(GId `  ( 1st `  R ) )  e.  ( `' F " { Z } )  <->  ( (GId `  ( 1st `  R
) )  e.  ran  ( 1st `  R )  /\  ( F `  (GId `  ( 1st `  R
) ) )  e. 
{ Z } ) ) )
205, 18, 193syl 20 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (GId `  ( 1st `  R
) )  e.  ( `' F " { Z } )  <->  ( (GId `  ( 1st `  R
) )  e.  ran  ( 1st `  R )  /\  ( F `  (GId `  ( 1st `  R
) ) )  e. 
{ Z } ) ) )
2112, 17, 20mpbir2and 920 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  (GId `  ( 1st `  R ) )  e.  ( `' F " { Z } ) )
22 an4 822 . . . . . . . 8  |-  ( ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z } )  /\  (
y  e.  ran  ( 1st `  R )  /\  ( F `  y )  e.  { Z }
) )  <->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( ( F `  x )  e.  { Z }  /\  ( F `  y )  e.  { Z } ) ) )
231, 2, 3rngohomadd 30267 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 1st `  R
) y ) )  =  ( ( F `
 x ) G ( F `  y
) ) )
2423adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( F `  ( x ( 1st `  R ) y ) )  =  ( ( F `  x ) G ( F `  y ) ) )
25 oveq12 6303 . . . . . . . . . . . . . 14  |-  ( ( ( F `  x
)  =  Z  /\  ( F `  y )  =  Z )  -> 
( ( F `  x ) G ( F `  y ) )  =  ( Z G Z ) )
2625adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( ( F `
 x ) G ( F `  y
) )  =  ( Z G Z ) )
273rngogrpo 25183 . . . . . . . . . . . . . . . 16  |-  ( S  e.  RingOps  ->  G  e.  GrpOp )
284, 13grpoidcl 25010 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  GrpOp  ->  Z  e.  ran  G )
294, 13grpolid 25012 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  GrpOp  /\  Z  e.  ran  G )  -> 
( Z G Z )  =  Z )
3028, 29mpdan 668 . . . . . . . . . . . . . . . 16  |-  ( G  e.  GrpOp  ->  ( Z G Z )  =  Z )
3127, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( S  e.  RingOps  ->  ( Z G Z )  =  Z )
32313ad2ant2 1018 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( Z G Z )  =  Z )
3332ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( Z G Z )  =  Z )
3424, 26, 333eqtrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( F `  ( x ( 1st `  R ) y ) )  =  Z )
3534ex 434 . . . . . . . . . . 11  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( F `
 x )  =  Z  /\  ( F `
 y )  =  Z )  ->  ( F `  ( x
( 1st `  R
) y ) )  =  Z ) )
36 fvex 5881 . . . . . . . . . . . . 13  |-  ( F `
 x )  e. 
_V
3736elsnc 4056 . . . . . . . . . . . 12  |-  ( ( F `  x )  e.  { Z }  <->  ( F `  x )  =  Z )
38 fvex 5881 . . . . . . . . . . . . 13  |-  ( F `
 y )  e. 
_V
3938elsnc 4056 . . . . . . . . . . . 12  |-  ( ( F `  y )  e.  { Z }  <->  ( F `  y )  =  Z )
4037, 39anbi12i 697 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  e.  { Z }  /\  ( F `  y )  e.  { Z } )  <->  ( ( F `  x )  =  Z  /\  ( F `  y )  =  Z ) )
41 fvex 5881 . . . . . . . . . . . 12  |-  ( F `
 ( x ( 1st `  R ) y ) )  e. 
_V
4241elsnc 4056 . . . . . . . . . . 11  |-  ( ( F `  ( x ( 1st `  R
) y ) )  e.  { Z }  <->  ( F `  ( x ( 1st `  R
) y ) )  =  Z )
4335, 40, 423imtr4g 270 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( F `
 x )  e. 
{ Z }  /\  ( F `  y )  e.  { Z }
)  ->  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) )
4443imdistanda 693 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( ( F `  x )  e.  { Z }  /\  ( F `  y
)  e.  { Z } ) )  -> 
( ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  /\  ( F `  ( x
( 1st `  R
) y ) )  e.  { Z }
) ) )
451, 2rngogcl 25184 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  x  e.  ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
) )
46453expib 1199 . . . . . . . . . . 11  |-  ( R  e.  RingOps  ->  ( ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) )  ->  (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
) ) )
47463ad2ant1 1017 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( x ( 1st `  R ) y )  e.  ran  ( 1st `  R ) ) )
4847anim1d 564 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( F `
 ( x ( 1st `  R ) y ) )  e. 
{ Z } )  ->  ( ( x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
4944, 48syld 44 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( ( F `  x )  e.  { Z }  /\  ( F `  y
)  e.  { Z } ) )  -> 
( ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
5022, 49syl5bi 217 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z } )  /\  (
y  e.  ran  ( 1st `  R )  /\  ( F `  y )  e.  { Z }
) )  ->  (
( x ( 1st `  R ) y )  e.  ran  ( 1st `  R )  /\  ( F `  ( x
( 1st `  R
) y ) )  e.  { Z }
) ) )
51 elpreima 6007 . . . . . . . . 9  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
x  e.  ( `' F " { Z } )  <->  ( x  e.  ran  ( 1st `  R
)  /\  ( F `  x )  e.  { Z } ) ) )
525, 18, 513syl 20 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( x  e.  ( `' F " { Z } )  <->  ( x  e.  ran  ( 1st `  R
)  /\  ( F `  x )  e.  { Z } ) ) )
53 elpreima 6007 . . . . . . . . 9  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
y  e.  ( `' F " { Z } )  <->  ( y  e.  ran  ( 1st `  R
)  /\  ( F `  y )  e.  { Z } ) ) )
545, 18, 533syl 20 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( y  e.  ( `' F " { Z } )  <->  ( y  e.  ran  ( 1st `  R
)  /\  ( F `  y )  e.  { Z } ) ) )
5552, 54anbi12d 710 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ( `' F " { Z } )  /\  y  e.  ( `' F " { Z } ) )  <-> 
( ( x  e. 
ran  ( 1st `  R
)  /\  ( F `  x )  e.  { Z } )  /\  (
y  e.  ran  ( 1st `  R )  /\  ( F `  y )  e.  { Z }
) ) ) )
56 elpreima 6007 . . . . . . . 8  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
( x ( 1st `  R ) y )  e.  ( `' F " { Z } )  <-> 
( ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
575, 18, 563syl 20 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x ( 1st `  R
) y )  e.  ( `' F " { Z } )  <->  ( (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
5850, 55, 573imtr4d 268 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ( `' F " { Z } )  /\  y  e.  ( `' F " { Z } ) )  ->  ( x ( 1st `  R ) y )  e.  ( `' F " { Z } ) ) )
5958impl 620 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z }
) )  /\  y  e.  ( `' F " { Z } ) )  ->  ( x ( 1st `  R ) y )  e.  ( `' F " { Z } ) )
6059ralrimiva 2881 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z } ) )  ->  A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } ) )
6137anbi2i 694 . . . . . . 7  |-  ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z }
)  <->  ( x  e. 
ran  ( 1st `  R
)  /\  ( F `  x )  =  Z ) )
62 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  R )  =  ( 2nd `  R )
631, 62, 2rngocl 25175 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RingOps  /\  z  e.  ran  ( 1st `  R
)  /\  x  e.  ran  ( 1st `  R
) )  ->  (
z ( 2nd `  R
) x )  e. 
ran  ( 1st `  R
) )
64633expb 1197 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  (
z  e.  ran  ( 1st `  R )  /\  x  e.  ran  ( 1st `  R ) ) )  ->  ( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R ) )
65643ad2antl1 1158 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( z  e.  ran  ( 1st `  R )  /\  x  e.  ran  ( 1st `  R
) ) )  -> 
( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R ) )
6665anass1rs 805 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R ) )
6766adantlrr 720 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
z ( 2nd `  R
) x )  e. 
ran  ( 1st `  R
) )
68 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  S )  =  ( 2nd `  S )
691, 2, 62, 68rngohommul 30268 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( z  e.  ran  ( 1st `  R )  /\  x  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
z ( 2nd `  R
) x ) )  =  ( ( F `
 z ) ( 2nd `  S ) ( F `  x
) ) )
7069anass1rs 805 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( F `  (
z ( 2nd `  R
) x ) )  =  ( ( F `
 z ) ( 2nd `  S ) ( F `  x
) ) )
7170adantlrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( z
( 2nd `  R
) x ) )  =  ( ( F `
 z ) ( 2nd `  S ) ( F `  x
) ) )
72 oveq2 6302 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  =  Z  ->  (
( F `  z
) ( 2nd `  S
) ( F `  x ) )  =  ( ( F `  z ) ( 2nd `  S ) Z ) )
7372adantl 466 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z )  -> 
( ( F `  z ) ( 2nd `  S ) ( F `
 x ) )  =  ( ( F `
 z ) ( 2nd `  S ) Z ) )
7473ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( F `  z
) ( 2nd `  S
) ( F `  x ) )  =  ( ( F `  z ) ( 2nd `  S ) Z ) )
751, 2, 3, 4rngohomcl 30265 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  z  e. 
ran  ( 1st `  R
) )  ->  ( F `  z )  e.  ran  G )
7613, 4, 3, 68rngorz 25195 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  RingOps  /\  ( F `  z )  e.  ran  G )  -> 
( ( F `  z ) ( 2nd `  S ) Z )  =  Z )
77763ad2antl2 1159 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( F `
 z )  e. 
ran  G )  -> 
( ( F `  z ) ( 2nd `  S ) Z )  =  Z )
7875, 77syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  z  e. 
ran  ( 1st `  R
) )  ->  (
( F `  z
) ( 2nd `  S
) Z )  =  Z )
7978adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( F `  z
) ( 2nd `  S
) Z )  =  Z )
8071, 74, 793eqtrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( z
( 2nd `  R
) x ) )  =  Z )
81 fvex 5881 . . . . . . . . . . . . 13  |-  ( F `
 ( z ( 2nd `  R ) x ) )  e. 
_V
8281elsnc 4056 . . . . . . . . . . . 12  |-  ( ( F `  ( z ( 2nd `  R
) x ) )  e.  { Z }  <->  ( F `  ( z ( 2nd `  R
) x ) )  =  Z )
8380, 82sylibr 212 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( z
( 2nd `  R
) x ) )  e.  { Z }
)
84 elpreima 6007 . . . . . . . . . . . . 13  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  <-> 
( ( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R )  /\  ( F `  ( z ( 2nd `  R ) x ) )  e.  { Z } ) ) )
855, 18, 843syl 20 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
z ( 2nd `  R
) x )  e.  ( `' F " { Z } )  <->  ( (
z ( 2nd `  R
) x )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( z ( 2nd `  R ) x ) )  e.  { Z } ) ) )
8685ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  <-> 
( ( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R )  /\  ( F `  ( z ( 2nd `  R ) x ) )  e.  { Z } ) ) )
8767, 83, 86mpbir2and 920 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
z ( 2nd `  R
) x )  e.  ( `' F " { Z } ) )
881, 62, 2rngocl 25175 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RingOps  /\  x  e.  ran  ( 1st `  R
)  /\  z  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) z )  e. 
ran  ( 1st `  R
) )
89883expb 1197 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  (
x  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R ) ) )  ->  ( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R ) )
90893ad2antl1 1158 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R
) ) )  -> 
( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R ) )
9190anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R ) )
9291adantlrr 720 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) z )  e. 
ran  ( 1st `  R
) )
931, 2, 62, 68rngohommul 30268 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 2nd `  R
) z ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  z
) ) )
9493anassrs 648 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( F `  (
x ( 2nd `  R
) z ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  z
) ) )
9594adantlrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) z ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  z
) ) )
96 oveq1 6301 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  =  Z  ->  (
( F `  x
) ( 2nd `  S
) ( F `  z ) )  =  ( Z ( 2nd `  S ) ( F `
 z ) ) )
9796adantl 466 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z )  -> 
( ( F `  x ) ( 2nd `  S ) ( F `
 z ) )  =  ( Z ( 2nd `  S ) ( F `  z
) ) )
9897ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( F `  x
) ( 2nd `  S
) ( F `  z ) )  =  ( Z ( 2nd `  S ) ( F `
 z ) ) )
9913, 4, 3, 68rngolz 25194 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  RingOps  /\  ( F `  z )  e.  ran  G )  -> 
( Z ( 2nd `  S ) ( F `
 z ) )  =  Z )
100993ad2antl2 1159 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( F `
 z )  e. 
ran  G )  -> 
( Z ( 2nd `  S ) ( F `
 z ) )  =  Z )
10175, 100syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  z  e. 
ran  ( 1st `  R
) )  ->  ( Z ( 2nd `  S
) ( F `  z ) )  =  Z )
102101adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( Z ( 2nd `  S
) ( F `  z ) )  =  Z )
10395, 98, 1023eqtrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) z ) )  =  Z )
104 fvex 5881 . . . . . . . . . . . . 13  |-  ( F `
 ( x ( 2nd `  R ) z ) )  e. 
_V
105104elsnc 4056 . . . . . . . . . . . 12  |-  ( ( F `  ( x ( 2nd `  R
) z ) )  e.  { Z }  <->  ( F `  ( x ( 2nd `  R
) z ) )  =  Z )
106103, 105sylibr 212 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) z ) )  e.  { Z }
)
107 elpreima 6007 . . . . . . . . . . . . 13  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
( x ( 2nd `  R ) z )  e.  ( `' F " { Z } )  <-> 
( ( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 2nd `  R ) z ) )  e.  { Z } ) ) )
1085, 18, 1073syl 20 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } )  <->  ( (
x ( 2nd `  R
) z )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( x ( 2nd `  R ) z ) )  e.  { Z } ) ) )
109108ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( x ( 2nd `  R ) z )  e.  ( `' F " { Z } )  <-> 
( ( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 2nd `  R ) z ) )  e.  { Z } ) ) )
11092, 106, 109mpbir2and 920 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) )
11187, 110jca 532 . . . . . . . . 9  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) )
112111ralrimiva 2881 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) )
113112ex 434 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) ) )
11461, 113syl5bi 217 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z }
)  ->  A. z  e.  ran  ( 1st `  R
) ( ( z ( 2nd `  R
) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) )
11552, 114sylbid 215 . . . . 5  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( x  e.  ( `' F " { Z } )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) ) )
116115imp 429 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z } ) )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) )
11760, 116jca 532 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z } ) )  ->  ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) )
118117ralrimiva 2881 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  ( `' F " { Z } ) ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) )
1191, 62, 2, 10isidl 30306 . . 3  |-  ( R  e.  RingOps  ->  ( ( `' F " { Z } )  e.  ( Idl `  R )  <-> 
( ( `' F " { Z } ) 
C_  ran  ( 1st `  R )  /\  (GId `  ( 1st `  R
) )  e.  ( `' F " { Z } )  /\  A. x  e.  ( `' F " { Z }
) ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) ) ) )
1201193ad2ant1 1017 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( ( `' F " { Z } )  e.  ( Idl `  R )  <-> 
( ( `' F " { Z } ) 
C_  ran  ( 1st `  R )  /\  (GId `  ( 1st `  R
) )  e.  ( `' F " { Z } )  /\  A. x  e.  ( `' F " { Z }
) ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) ) ) )
1219, 21, 118, 120mpbir3and 1179 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( `' F " { Z }
)  e.  ( Idl `  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    C_ wss 3481   {csn 4032   `'ccnv 5003   dom cdm 5004   ran crn 5005   "cima 5007    Fn wfn 5588   -->wf 5589   ` cfv 5593  (class class class)co 6294   1stc1st 6792   2ndc2nd 6793   GrpOpcgr 24979  GIdcgi 24980   RingOpscrngo 25168    RngHom crnghom 30258   Idlcidl 30299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-1st 6794  df-2nd 6795  df-map 7432  df-grpo 24984  df-gid 24985  df-ginv 24986  df-ablo 25075  df-ghom 25151  df-rngo 25169  df-rngohom 30261  df-idl 30302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator