MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kerf1hrm Structured version   Unicode version

Theorem kerf1hrm 17519
Description: A ring homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
kerf1hrm.a  |-  A  =  ( Base `  R
)
kerf1hrm.b  |-  B  =  ( Base `  S
)
kerf1hrm.n  |-  N  =  ( 0g `  R
)
kerf1hrm.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
kerf1hrm  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )

Proof of Theorem kerf1hrm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B ) )
2 f1fn 5788 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F  Fn  A )
32adantl 466 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  ->  F  Fn  A )
4 elpreima 6008 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
53, 4syl 16 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
65biimpa 484 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  (
x  e.  A  /\  ( F `  x )  e.  {  .0.  }
) )
76simpld 459 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  x  e.  A )
86simprd 463 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  ( F `  x )  e.  {  .0.  } )
9 fvex 5882 . . . . . . . . 9  |-  ( F `
 x )  e. 
_V
109elsnc 4056 . . . . . . . 8  |-  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  )
118, 10sylib 196 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  ( F `  x )  =  .0.  )
12 kerf1hrm.a . . . . . . . . . . 11  |-  A  =  ( Base `  R
)
13 kerf1hrm.b . . . . . . . . . . 11  |-  B  =  ( Base `  S
)
14 kerf1hrm.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
15 kerf1hrm.n . . . . . . . . . . 11  |-  N  =  ( 0g `  R
)
1612, 13, 14, 15f1rhm0to0 17516 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
1716biimpd 207 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  ->  x  =  N ) )
18173expa 1196 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A )  ->  ( ( F `  x )  =  .0. 
->  x  =  N
) )
1918imp 429 . . . . . . 7  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B
)  /\  x  e.  A )  /\  ( F `  x )  =  .0.  )  ->  x  =  N )
201, 7, 11, 19syl21anc 1227 . . . . . 6  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  x  =  N )
2120ex 434 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  =  N ) )
22 elsn 4046 . . . . 5  |-  ( x  e.  { N }  <->  x  =  N )
2321, 22syl6ibr 227 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  e.  { N } ) )
2423ssrdv 3505 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  C_  { N } )
25 rhmrcl1 17495 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
26 ringgrp 17330 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2712, 15grpidcl 16205 . . . . . . 7  |-  ( R  e.  Grp  ->  N  e.  A )
2825, 26, 273syl 20 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  N  e.  A )
29 rhmghm 17501 . . . . . . . 8  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
3015, 14ghmid 16400 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
3129, 30syl 16 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  N )  =  .0.  )
32 fvex 5882 . . . . . . . 8  |-  ( F `
 N )  e. 
_V
3332elsnc 4056 . . . . . . 7  |-  ( ( F `  N )  e.  {  .0.  }  <->  ( F `  N )  =  .0.  )
3431, 33sylibr 212 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  N )  e.  {  .0.  } )
3512, 13rhmf 17502 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F : A
--> B )
36 ffn 5737 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
37 elpreima 6008 . . . . . . 7  |-  ( F  Fn  A  ->  ( N  e.  ( `' F " {  .0.  }
)  <->  ( N  e.  A  /\  ( F `
 N )  e. 
{  .0.  } ) ) )
3835, 36, 373syl 20 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( N  e.  ( `' F " {  .0.  } )  <->  ( N  e.  A  /\  ( F `  N )  e.  {  .0.  } ) ) )
3928, 34, 38mpbir2and 922 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  N  e.  ( `' F " {  .0.  } ) )
4039snssd 4177 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  { N }  C_  ( `' F " {  .0.  } ) )
4140adantr 465 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  ->  { N }  C_  ( `' F " {  .0.  } ) )
4224, 41eqssd 3516 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  =  { N } )
4335adantr 465 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A --> B )
4429adantr 465 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( R  GrpHom  S ) )
45 simpr2l 1055 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  A )
46 simpr2r 1056 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  A )
47 simpr3 1004 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
48 eqid 2457 . . . . . . . . . . . 12  |-  ( `' F " {  .0.  } )  =  ( `' F " {  .0.  } )
49 eqid 2457 . . . . . . . . . . . 12  |-  ( -g `  R )  =  (
-g `  R )
5012, 14, 48, 49ghmeqker 16420 . . . . . . . . . . 11  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x
( -g `  R ) y )  e.  ( `' F " {  .0.  } ) ) )
5150biimpa 484 . . . . . . . . . 10  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) )  ->  ( x (
-g `  R )
y )  e.  ( `' F " {  .0.  } ) )
5244, 45, 46, 47, 51syl31anc 1231 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  ( `' F " {  .0.  } ) )
53 simpr1 1002 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( `' F " {  .0.  } )  =  { N } )
5452, 53eleqtrd 2547 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e. 
{ N } )
55 ovex 6324 . . . . . . . . 9  |-  ( x ( -g `  R
) y )  e. 
_V
5655elsnc 4056 . . . . . . . 8  |-  ( ( x ( -g `  R
) y )  e. 
{ N }  <->  ( x
( -g `  R ) y )  =  N )
5754, 56sylib 196 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  =  N )
5825adantr 465 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Ring )
5958, 26syl 16 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Grp )
6012, 15, 49grpsubeq0 16251 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( ( x (
-g `  R )
y )  =  N  <-> 
x  =  y ) )
6159, 45, 46, 60syl3anc 1228 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  =  N  <->  x  =  y ) )
6257, 61mpbid 210 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
63623anassrs 1218 . . . . 5  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  ( x  e.  A  /\  y  e.  A ) )  /\  ( F `  x )  =  ( F `  y ) )  ->  x  =  y )
6463ex 434 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6564ralrimivva 2878 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
66 dff13 6167 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6743, 65, 66sylanbrc 664 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A -1-1-> B )
6842, 67impbida 832 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807    C_ wss 3471   {csn 4032   `'ccnv 5007   "cima 5011    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   ` cfv 5594  (class class class)co 6296   Basecbs 14644   0gc0g 14857   Grpcgrp 16180   -gcsg 16182    GrpHom cghm 16391   Ringcrg 17325   RingHom crh 17488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-plusg 14725  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-grp 16184  df-minusg 16185  df-sbg 16186  df-ghm 16392  df-mgp 17269  df-ur 17281  df-ring 17327  df-rnghom 17491
This theorem is referenced by:  zrhf1ker  28117
  Copyright terms: Public domain W3C validator