Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Unicode version

Theorem kercvrlsm 30486
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u  |-  U  =  ( LSubSp `  S )
kercvrlsm.p  |-  .(+)  =  (
LSSum `  S )
kercvrlsm.z  |-  .0.  =  ( 0g `  T )
kercvrlsm.k  |-  K  =  ( `' F " {  .0.  } )
kercvrlsm.b  |-  B  =  ( Base `  S
)
kercvrlsm.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
kercvrlsm.d  |-  ( ph  ->  D  e.  U )
kercvrlsm.cv  |-  ( ph  ->  ( F " D
)  =  ran  F
)
Assertion
Ref Expression
kercvrlsm  |-  ( ph  ->  ( K  .(+)  D )  =  B )

Proof of Theorem kercvrlsm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
2 lmhmlmod1 17455 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
31, 2syl 16 . . . 4  |-  ( ph  ->  S  e.  LMod )
4 kercvrlsm.k . . . . . 6  |-  K  =  ( `' F " {  .0.  } )
5 kercvrlsm.z . . . . . 6  |-  .0.  =  ( 0g `  T )
6 kercvrlsm.u . . . . . 6  |-  U  =  ( LSubSp `  S )
74, 5, 6lmhmkerlss 17473 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  K  e.  U )
81, 7syl 16 . . . 4  |-  ( ph  ->  K  e.  U )
9 kercvrlsm.d . . . 4  |-  ( ph  ->  D  e.  U )
10 kercvrlsm.p . . . . 5  |-  .(+)  =  (
LSSum `  S )
116, 10lsmcl 17505 . . . 4  |-  ( ( S  e.  LMod  /\  K  e.  U  /\  D  e.  U )  ->  ( K  .(+)  D )  e.  U )
123, 8, 9, 11syl3anc 1223 . . 3  |-  ( ph  ->  ( K  .(+)  D )  e.  U )
13 kercvrlsm.b . . . 4  |-  B  =  ( Base `  S
)
1413, 6lssss 17359 . . 3  |-  ( ( K  .(+)  D )  e.  U  ->  ( K 
.(+)  D )  C_  B
)
1512, 14syl 16 . 2  |-  ( ph  ->  ( K  .(+)  D ) 
C_  B )
16 eqid 2460 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
1713, 16lmhmf 17456 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  F : B
--> ( Base `  T
) )
181, 17syl 16 . . . . . . . . 9  |-  ( ph  ->  F : B --> ( Base `  T ) )
19 ffn 5722 . . . . . . . . 9  |-  ( F : B --> ( Base `  T )  ->  F  Fn  B )
2018, 19syl 16 . . . . . . . 8  |-  ( ph  ->  F  Fn  B )
21 fnfvelrn 6009 . . . . . . . 8  |-  ( ( F  Fn  B  /\  a  e.  B )  ->  ( F `  a
)  e.  ran  F
)
2220, 21sylan 471 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( F `  a )  e.  ran  F )
23 kercvrlsm.cv . . . . . . . 8  |-  ( ph  ->  ( F " D
)  =  ran  F
)
2423adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( F " D )  =  ran  F )
2522, 24eleqtrrd 2551 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( F `  a )  e.  ( F " D
) )
2620adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  F  Fn  B )
2713, 6lssss 17359 . . . . . . . . 9  |-  ( D  e.  U  ->  D  C_  B )
289, 27syl 16 . . . . . . . 8  |-  ( ph  ->  D  C_  B )
2928adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  D  C_  B )
30 fvelimab 5914 . . . . . . 7  |-  ( ( F  Fn  B  /\  D  C_  B )  -> 
( ( F `  a )  e.  ( F " D )  <->  E. b  e.  D  ( F `  b )  =  ( F `  a ) ) )
3126, 29, 30syl2anc 661 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( F `  a
)  e.  ( F
" D )  <->  E. b  e.  D  ( F `  b )  =  ( F `  a ) ) )
3225, 31mpbid 210 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  E. b  e.  D  ( F `  b )  =  ( F `  a ) )
33 lmodgrp 17295 . . . . . . . . . . . . 13  |-  ( S  e.  LMod  ->  S  e. 
Grp )
343, 33syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Grp )
3534adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  ->  S  e.  Grp )
36 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
a  e.  B )
3728sselda 3497 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  D )  ->  b  e.  B )
3837adantrl 715 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
b  e.  B )
39 eqid 2460 . . . . . . . . . . . 12  |-  ( +g  `  S )  =  ( +g  `  S )
40 eqid 2460 . . . . . . . . . . . 12  |-  ( -g `  S )  =  (
-g `  S )
4113, 39, 40grpnpcan 15924 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( ( a (
-g `  S )
b ) ( +g  `  S ) b )  =  a )
4235, 36, 38, 41syl3anc 1223 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( a (
-g `  S )
b ) ( +g  `  S ) b )  =  a )
4342adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( (
a ( -g `  S
) b ) ( +g  `  S ) b )  =  a )
443ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  S  e.  LMod )
4513, 6lssss 17359 . . . . . . . . . . . 12  |-  ( K  e.  U  ->  K  C_  B )
468, 45syl 16 . . . . . . . . . . 11  |-  ( ph  ->  K  C_  B )
4746ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  K  C_  B
)
4828ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  D  C_  B
)
49 eqcom 2469 . . . . . . . . . . . 12  |-  ( ( F `  b )  =  ( F `  a )  <->  ( F `  a )  =  ( F `  b ) )
50 lmghm 17453 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
511, 50syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
5251adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  ->  F  e.  ( S  GrpHom  T ) )
5313, 5, 4, 40ghmeqker 16081 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  B  /\  b  e.  B )  ->  (
( F `  a
)  =  ( F `
 b )  <->  ( a
( -g `  S ) b )  e.  K
) )
5452, 36, 38, 53syl3anc 1223 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( a ( -g `  S ) b )  e.  K ) )
5549, 54syl5bb 257 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  b )  =  ( F `  a )  <-> 
( a ( -g `  S ) b )  e.  K ) )
5655biimpa 484 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( a
( -g `  S ) b )  e.  K
)
57 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  b  e.  D )
5813, 39, 10lsmelvalix 16450 . . . . . . . . . 10  |-  ( ( ( S  e.  LMod  /\  K  C_  B  /\  D  C_  B )  /\  ( ( a (
-g `  S )
b )  e.  K  /\  b  e.  D
) )  ->  (
( a ( -g `  S ) b ) ( +g  `  S
) b )  e.  ( K  .(+)  D ) )
5944, 47, 48, 56, 57, 58syl32anc 1231 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( (
a ( -g `  S
) b ) ( +g  `  S ) b )  e.  ( K  .(+)  D )
)
6043, 59eqeltrrd 2549 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  a  e.  ( K  .(+)  D ) )
6160ex 434 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  b )  =  ( F `  a )  ->  a  e.  ( K  .(+)  D )
) )
6261anassrs 648 . . . . . 6  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  D )  ->  (
( F `  b
)  =  ( F `
 a )  -> 
a  e.  ( K 
.(+)  D ) ) )
6362rexlimdva 2948 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( E. b  e.  D  ( F `  b )  =  ( F `  a )  ->  a  e.  ( K  .(+)  D ) ) )
6432, 63mpd 15 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  ( K  .(+)  D ) )
6564ex 434 . . 3  |-  ( ph  ->  ( a  e.  B  ->  a  e.  ( K 
.(+)  D ) ) )
6665ssrdv 3503 . 2  |-  ( ph  ->  B  C_  ( K  .(+) 
D ) )
6715, 66eqssd 3514 1  |-  ( ph  ->  ( K  .(+)  D )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2808    C_ wss 3469   {csn 4020   `'ccnv 4991   ran crn 4993   "cima 4995    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   Basecbs 14479   +g cplusg 14544   0gc0g 14684   Grpcgrp 15716   -gcsg 15719    GrpHom cghm 16052   LSSumclsm 16443   LModclmod 17288   LSubSpclss 17354   LMHom clmhm 17441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-0g 14686  df-mnd 15721  df-submnd 15771  df-grp 15851  df-minusg 15852  df-sbg 15853  df-subg 15986  df-ghm 16053  df-cntz 16143  df-lsm 16445  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-rng 16981  df-lmod 17290  df-lss 17355  df-lmhm 17444
This theorem is referenced by:  lmhmfgsplit  30489
  Copyright terms: Public domain W3C validator