Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Unicode version

Theorem kelac2 35842
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
kelac2.z  |-  ( (
ph  /\  x  e.  I )  ->  S  =/=  (/) )
kelac2.k  |-  ( ph  ->  ( Xt_ `  (
x  e.  I  |->  (
topGen `  { S ,  { ~P U. S } } ) ) )  e.  Comp )
Assertion
Ref Expression
kelac2  |-  ( ph  -> 
X_ x  e.  I  S  =/=  (/) )
Distinct variable groups:    ph, x    x, I
Allowed substitution hints:    S( x)    V( x)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2  |-  ( (
ph  /\  x  e.  I )  ->  S  =/=  (/) )
2 kelac2.s . . 3  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
3 kelac2lem 35841 . . 3  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Comp )
4 cmptop 20396 . . 3  |-  ( (
topGen `  { S ,  { ~P U. S } } )  e.  Comp  -> 
( topGen `  { S ,  { ~P U. S } } )  e.  Top )
52, 3, 43syl 18 . 2  |-  ( (
ph  /\  x  e.  I )  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Top )
6 uncom 3610 . . . . . . 7  |-  ( S  u.  { ~P U. S } )  =  ( { ~P U. S }  u.  S )
76difeq1i 3579 . . . . . 6  |-  ( ( S  u.  { ~P U. S } )  \  S )  =  ( ( { ~P U. S }  u.  S
)  \  S )
8 difun2 3875 . . . . . 6  |-  ( ( { ~P U. S }  u.  S )  \  S )  =  ( { ~P U. S }  \  S )
97, 8eqtri 2451 . . . . 5  |-  ( ( S  u.  { ~P U. S } )  \  S )  =  ( { ~P U. S }  \  S )
10 snex 4658 . . . . . . 7  |-  { ~P U. S }  e.  _V
11 uniprg 4230 . . . . . . 7  |-  ( ( S  e.  V  /\  { ~P U. S }  e.  _V )  ->  U. { S ,  { ~P U. S } }  =  ( S  u.  { ~P U. S } ) )
122, 10, 11sylancl 666 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  U. { S ,  { ~P U. S } }  =  ( S  u.  { ~P U. S } ) )
1312difeq1d 3582 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  =  ( ( S  u.  { ~P U. S } ) 
\  S ) )
14 incom 3655 . . . . . . 7  |-  ( { ~P U. S }  i^i  S )  =  ( S  i^i  { ~P U. S } )
15 pwuninel 7026 . . . . . . . . 9  |-  -.  ~P U. S  e.  S
1615a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  -.  ~P U. S  e.  S
)
17 disjsn 4057 . . . . . . . 8  |-  ( ( S  i^i  { ~P U. S } )  =  (/) 
<->  -.  ~P U. S  e.  S )
1816, 17sylibr 215 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( S  i^i  { ~P U. S } )  =  (/) )
1914, 18syl5eq 2475 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( { ~P U. S }  i^i  S )  =  (/) )
20 disj3 3837 . . . . . 6  |-  ( ( { ~P U. S }  i^i  S )  =  (/) 
<->  { ~P U. S }  =  ( { ~P U. S }  \  S ) )
2119, 20sylib 199 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  =  ( { ~P U. S }  \  S ) )
229, 13, 213eqtr4a 2489 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  =  { ~P U. S } )
23 prex 4659 . . . . . 6  |-  { S ,  { ~P U. S } }  e.  _V
24 bastg 19967 . . . . . 6  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  { S ,  { ~P U. S } }  C_  ( topGen `  { S ,  { ~P U. S } } ) )
2523, 24mp1i 13 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { S ,  { ~P U. S } }  C_  ( topGen `  { S ,  { ~P U. S } }
) )
2610prid2 4106 . . . . . 6  |-  { ~P U. S }  e.  { S ,  { ~P U. S } }
2726a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  e.  { S ,  { ~P U. S } } )
2825, 27sseldd 3465 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  e.  (
topGen `  { S ,  { ~P U. S } } ) )
2922, 28eqeltrd 2510 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) )
30 prid1g 4103 . . . . 5  |-  ( S  e.  V  ->  S  e.  { S ,  { ~P U. S } }
)
31 elssuni 4245 . . . . 5  |-  ( S  e.  { S ,  { ~P U. S } }  ->  S  C_  U. { S ,  { ~P U. S } } )
322, 30, 313syl 18 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  S  C_ 
U. { S ,  { ~P U. S } } )
33 unitg 19968 . . . . . . 7  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  U. ( topGen `  { S ,  { ~P U. S } } )  =  U. { S ,  { ~P U. S } } )
3423, 33ax-mp 5 . . . . . 6  |-  U. ( topGen `
 { S ,  { ~P U. S } } )  =  U. { S ,  { ~P U. S } }
3534eqcomi 2435 . . . . 5  |-  U. { S ,  { ~P U. S } }  =  U. ( topGen `  { S ,  { ~P U. S } } )
3635iscld2 20029 . . . 4  |-  ( ( ( topGen `  { S ,  { ~P U. S } } )  e.  Top  /\  S  C_  U. { S ,  { ~P U. S } } )  ->  ( S  e.  ( Clsd `  ( topGen `  { S ,  { ~P U. S } } ) )  <->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) ) )
375, 32, 36syl2anc 665 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( S  e.  ( Clsd `  ( topGen `  { S ,  { ~P U. S } } ) )  <->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) ) )
3829, 37mpbird 235 . 2  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  ( Clsd `  ( topGen `
 { S ,  { ~P U. S } } ) ) )
39 f1oi 5862 . . 3  |-  (  _I  |`  S ) : S -1-1-onto-> S
4039a1i 11 . 2  |-  ( (
ph  /\  x  e.  I )  ->  (  _I  |`  S ) : S -1-1-onto-> S )
41 elssuni 4245 . . . . 5  |-  ( { ~P U. S }  e.  { S ,  { ~P U. S } }  ->  { ~P U. S }  C_  U. { S ,  { ~P U. S } } )
4226, 41mp1i 13 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  C_  U. { S ,  { ~P U. S } } )
43 uniexg 6598 . . . . 5  |-  ( S  e.  V  ->  U. S  e.  _V )
44 pwexg 4604 . . . . 5  |-  ( U. S  e.  _V  ->  ~P
U. S  e.  _V )
45 snidg 4022 . . . . 5  |-  ( ~P
U. S  e.  _V  ->  ~P U. S  e. 
{ ~P U. S } )
462, 43, 44, 454syl 19 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  { ~P U. S } )
4742, 46sseldd 3465 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  U. { S ,  { ~P U. S } } )
4847, 34syl6eleqr 2521 . 2  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  U. ( topGen `
 { S ,  { ~P U. S } } ) )
49 kelac2.k . 2  |-  ( ph  ->  ( Xt_ `  (
x  e.  I  |->  (
topGen `  { S ,  { ~P U. S } } ) ) )  e.  Comp )
501, 5, 38, 40, 48, 49kelac1 35840 1  |-  ( ph  -> 
X_ x  e.  I  S  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   _Vcvv 3081    \ cdif 3433    u. cun 3434    i^i cin 3435    C_ wss 3436   (/)c0 3761   ~Pcpw 3979   {csn 3996   {cpr 3998   U.cuni 4216    |-> cmpt 4479    _I cid 4759    |` cres 4851   -1-1-onto->wf1o 5596   ` cfv 5597   X_cixp 7526   topGenctg 15323   Xt_cpt 15324   Topctop 19903   Clsdccld 20017   Compccmp 20387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fi 7927  df-topgen 15329  df-pt 15330  df-top 19907  df-bases 19908  df-cld 20020  df-cmp 20388
This theorem is referenced by:  dfac21  35843
  Copyright terms: Public domain W3C validator