![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm3.1lem1 | Structured version Unicode version |
Description: Lemma for jm3.1 29537. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
jm3.1.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jm3.1.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jm3.1.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jm3.1.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
jm3.1lem1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jm3.1.b |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eluzelre 10985 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | jm3.1.c |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | nnnn0d 10750 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | reexpcld 12145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2z 10792 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
8 | uzid 10989 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | uz2mulcl 11046 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 1, 10 | sylancr 663 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | uz2m1nn 11043 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 11, 12 | syl 16 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | nnred 10451 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14, 5 | reexpcld 12145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | jm3.1.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | eluzelre 10985 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | 16, 17 | syl 16 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | uz2m1nn 11043 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 1, 19 | syl 16 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20 | nngt0d 10479 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 2cn 10506 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
23 | 3 | recnd 9526 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | mulcl 9480 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | 22, 23, 24 | sylancr 663 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | ax-1cn 9454 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
27 | 26 | a1i 11 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 27, 23 | sub32d 9865 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 23 | 2timesd 10681 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 29 | oveq1d 6218 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 23, 23 | pncand 9834 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 30, 31 | eqtrd 2495 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32 | oveq1d 6218 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 28, 33 | eqtrd 2495 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 21, 34 | breqtrrd 4429 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 3, 14 | posdifd 10040 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 35, 36 | mpbird 232 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | eluz2b2 11041 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 38 | simplbi 460 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 1, 39 | syl 16 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 40 | nnrpd 11140 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 13 | nnrpd 11140 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | rpexpmord 29457 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
44 | 4, 41, 42, 43 | syl3anc 1219 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 37, 44 | mpbid 210 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 4 | nnzd 10860 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 46 | peano2zd 10864 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | frmy 29423 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
49 | 48 | fovcl 6308 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 1, 47, 49 | syl2anc 661 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 50 | zred 10861 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | jm2.17a 29471 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
53 | 1, 5, 52 | syl2anc 661 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | jm3.1.d |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
55 | 15, 51, 18, 53, 54 | letrd 9642 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 6, 15, 18, 45, 55 | ltletrd 9645 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1955 ax-ext 2432 ax-rep 4514 ax-sep 4524 ax-nul 4532 ax-pow 4581 ax-pr 4642 ax-un 6485 ax-inf2 7961 ax-cnex 9452 ax-resscn 9453 ax-1cn 9454 ax-icn 9455 ax-addcl 9456 ax-addrcl 9457 ax-mulcl 9458 ax-mulrcl 9459 ax-mulcom 9460 ax-addass 9461 ax-mulass 9462 ax-distr 9463 ax-i2m1 9464 ax-1ne0 9465 ax-1rid 9466 ax-rnegex 9467 ax-rrecex 9468 ax-cnre 9469 ax-pre-lttri 9470 ax-pre-lttrn 9471 ax-pre-ltadd 9472 ax-pre-mulgt0 9473 ax-pre-sup 9474 ax-addf 9475 ax-mulf 9476 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-fal 1376 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2266 df-mo 2267 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2604 df-ne 2650 df-nel 2651 df-ral 2804 df-rex 2805 df-reu 2806 df-rmo 2807 df-rab 2808 df-v 3080 df-sbc 3295 df-csb 3399 df-dif 3442 df-un 3444 df-in 3446 df-ss 3453 df-pss 3455 df-nul 3749 df-if 3903 df-pw 3973 df-sn 3989 df-pr 3991 df-tp 3993 df-op 3995 df-uni 4203 df-int 4240 df-iun 4284 df-iin 4285 df-br 4404 df-opab 4462 df-mpt 4463 df-tr 4497 df-eprel 4743 df-id 4747 df-po 4752 df-so 4753 df-fr 4790 df-se 4791 df-we 4792 df-ord 4833 df-on 4834 df-lim 4835 df-suc 4836 df-xp 4957 df-rel 4958 df-cnv 4959 df-co 4960 df-dm 4961 df-rn 4962 df-res 4963 df-ima 4964 df-iota 5492 df-fun 5531 df-fn 5532 df-f 5533 df-f1 5534 df-fo 5535 df-f1o 5536 df-fv 5537 df-isom 5538 df-riota 6164 df-ov 6206 df-oprab 6207 df-mpt2 6208 df-of 6433 df-om 6590 df-1st 6690 df-2nd 6691 df-supp 6804 df-recs 6945 df-rdg 6979 df-1o 7033 df-2o 7034 df-oadd 7037 df-omul 7038 df-er 7214 df-map 7329 df-pm 7330 df-ixp 7377 df-en 7424 df-dom 7425 df-sdom 7426 df-fin 7427 df-fsupp 7735 df-fi 7775 df-sup 7805 df-oi 7838 df-card 8223 df-acn 8226 df-cda 8451 df-pnf 9534 df-mnf 9535 df-xr 9536 df-ltxr 9537 df-le 9538 df-sub 9711 df-neg 9712 df-div 10108 df-nn 10437 df-2 10494 df-3 10495 df-4 10496 df-5 10497 df-6 10498 df-7 10499 df-8 10500 df-9 10501 df-10 10502 df-n0 10694 df-z 10761 df-dec 10870 df-uz 10976 df-q 11068 df-rp 11106 df-xneg 11203 df-xadd 11204 df-xmul 11205 df-ioo 11418 df-ioc 11419 df-ico 11420 df-icc 11421 df-fz 11558 df-fzo 11669 df-fl 11762 df-mod 11829 df-seq 11927 df-exp 11986 df-fac 12172 df-bc 12199 df-hash 12224 df-shft 12677 df-cj 12709 df-re 12710 df-im 12711 df-sqr 12845 df-abs 12846 df-limsup 13070 df-clim 13087 df-rlim 13088 df-sum 13285 df-ef 13474 df-sin 13476 df-cos 13477 df-pi 13479 df-dvds 13657 df-gcd 13812 df-numer 13934 df-denom 13935 df-struct 14297 df-ndx 14298 df-slot 14299 df-base 14300 df-sets 14301 df-ress 14302 df-plusg 14373 df-mulr 14374 df-starv 14375 df-sca 14376 df-vsca 14377 df-ip 14378 df-tset 14379 df-ple 14380 df-ds 14382 df-unif 14383 df-hom 14384 df-cco 14385 df-rest 14483 df-topn 14484 df-0g 14502 df-gsum 14503 df-topgen 14504 df-pt 14505 df-prds 14508 df-xrs 14562 df-qtop 14567 df-imas 14568 df-xps 14570 df-mre 14646 df-mrc 14647 df-acs 14649 df-mnd 15537 df-submnd 15587 df-mulg 15670 df-cntz 15957 df-cmn 16403 df-psmet 17937 df-xmet 17938 df-met 17939 df-bl 17940 df-mopn 17941 df-fbas 17942 df-fg 17943 df-cnfld 17947 df-top 18638 df-bases 18640 df-topon 18641 df-topsp 18642 df-cld 18758 df-ntr 18759 df-cls 18760 df-nei 18837 df-lp 18875 df-perf 18876 df-cn 18966 df-cnp 18967 df-haus 19054 df-tx 19270 df-hmeo 19463 df-fil 19554 df-fm 19646 df-flim 19647 df-flf 19648 df-xms 20030 df-ms 20031 df-tms 20032 df-cncf 20589 df-limc 21477 df-dv 21478 df-log 22144 df-squarenn 29350 df-pell1qr 29351 df-pell14qr 29352 df-pell1234qr 29353 df-pellfund 29354 df-rmx 29411 df-rmy 29412 |
This theorem is referenced by: jm3.1lem2 29535 |
Copyright terms: Public domain | W3C validator |