Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27a Unicode version

Theorem jm2.27a 26966
Description: Lemma for jm2.27 26969. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
jm2.27a2  |-  ( ph  ->  B  e.  NN )
jm2.27a3  |-  ( ph  ->  C  e.  NN )
jm2.27a4  |-  ( ph  ->  D  e.  NN0 )
jm2.27a5  |-  ( ph  ->  E  e.  NN0 )
jm2.27a6  |-  ( ph  ->  F  e.  NN0 )
jm2.27a7  |-  ( ph  ->  G  e.  NN0 )
jm2.27a8  |-  ( ph  ->  H  e.  NN0 )
jm2.27a9  |-  ( ph  ->  I  e.  NN0 )
jm2.27a10  |-  ( ph  ->  J  e.  NN0 )
jm2.27a11  |-  ( ph  ->  ( ( D ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( C ^ 2 ) ) )  =  1 )
jm2.27a12  |-  ( ph  ->  ( ( F ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( E ^ 2 ) ) )  =  1 )
jm2.27a13  |-  ( ph  ->  G  e.  ( ZZ>= ` 
2 ) )
jm2.27a14  |-  ( ph  ->  ( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1 )
jm2.27a15  |-  ( ph  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
jm2.27a16  |-  ( ph  ->  F  ||  ( G  -  A ) )
jm2.27a17  |-  ( ph  ->  ( 2  x.  C
)  ||  ( G  -  1 ) )
jm2.27a18  |-  ( ph  ->  F  ||  ( H  -  C ) )
jm2.27a19  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  B ) )
jm2.27a20  |-  ( ph  ->  B  <_  C )
jm2.27a21  |-  ( ph  ->  P  e.  ZZ )
jm2.27a22  |-  ( ph  ->  D  =  ( A Xrm  P ) )
jm2.27a23  |-  ( ph  ->  C  =  ( A Yrm  P ) )
jm2.27a24  |-  ( ph  ->  Q  e.  ZZ )
jm2.27a25  |-  ( ph  ->  F  =  ( A Xrm  Q ) )
jm2.27a26  |-  ( ph  ->  E  =  ( A Yrm  Q ) )
jm2.27a27  |-  ( ph  ->  R  e.  ZZ )
jm2.27a28  |-  ( ph  ->  I  =  ( G Xrm  R ) )
jm2.27a29  |-  ( ph  ->  H  =  ( G Yrm  R ) )
Assertion
Ref Expression
jm2.27a  |-  ( ph  ->  C  =  ( A Yrm  B ) )

Proof of Theorem jm2.27a
StepHypRef Expression
1 jm2.27a23 . 2  |-  ( ph  ->  C  =  ( A Yrm  P ) )
2 2z 10268 . . . . . 6  |-  2  e.  ZZ
3 jm2.27a3 . . . . . . 7  |-  ( ph  ->  C  e.  NN )
43nnzd 10330 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
5 zmulcl 10280 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  C  e.  ZZ )  ->  ( 2  x.  C
)  e.  ZZ )
62, 4, 5sylancr 645 . . . . 5  |-  ( ph  ->  ( 2  x.  C
)  e.  ZZ )
7 jm2.27a2 . . . . . 6  |-  ( ph  ->  B  e.  NN )
87nnzd 10330 . . . . 5  |-  ( ph  ->  B  e.  ZZ )
9 jm2.27a27 . . . . 5  |-  ( ph  ->  R  e.  ZZ )
10 jm2.27a21 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
11 jm2.27a8 . . . . . . . 8  |-  ( ph  ->  H  e.  NN0 )
1211nn0zd 10329 . . . . . . 7  |-  ( ph  ->  H  e.  ZZ )
13 jm2.27a19 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  B ) )
14 congsym 26923 . . . . . . . 8  |-  ( ( ( ( 2  x.  C )  e.  ZZ  /\  H  e.  ZZ )  /\  ( B  e.  ZZ  /\  ( 2  x.  C )  ||  ( H  -  B
) ) )  -> 
( 2  x.  C
)  ||  ( B  -  H ) )
156, 12, 8, 13, 14syl22anc 1185 . . . . . . 7  |-  ( ph  ->  ( 2  x.  C
)  ||  ( B  -  H ) )
16 jm2.27a17 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  C
)  ||  ( G  -  1 ) )
17 jm2.27a13 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( ZZ>= ` 
2 ) )
1811nn0ge0d 10233 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  H )
19 rmy0 26882 . . . . . . . . . . . . . 14  |-  ( G  e.  ( ZZ>= `  2
)  ->  ( G Yrm  0 )  =  0 )
2017, 19syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G Yrm  0 )  =  0 )
21 jm2.27a29 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  =  ( G Yrm  R ) )
2221eqcomd 2409 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G Yrm  R )  =  H )
2318, 20, 223brtr4d 4202 . . . . . . . . . . . 12  |-  ( ph  ->  ( G Yrm  0 )  <_ 
( G Yrm  R ) )
24 0z 10249 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
2524a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  ZZ )
26 lermy 26910 . . . . . . . . . . . . 13  |-  ( ( G  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  R  e.  ZZ )  ->  (
0  <_  R  <->  ( G Yrm  0 )  <_  ( G Yrm  R
) ) )
2717, 25, 9, 26syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  R  <->  ( G Yrm  0 )  <_  ( G Yrm 
R ) ) )
2823, 27mpbird 224 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  R )
29 elnn0z 10250 . . . . . . . . . . 11  |-  ( R  e.  NN0  <->  ( R  e.  ZZ  /\  0  <_  R ) )
309, 28, 29sylanbrc 646 . . . . . . . . . 10  |-  ( ph  ->  R  e.  NN0 )
31 jm2.16nn0 26965 . . . . . . . . . 10  |-  ( ( G  e.  ( ZZ>= ` 
2 )  /\  R  e.  NN0 )  ->  ( G  -  1 ) 
||  ( ( G Yrm  R )  -  R ) )
3217, 30, 31syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( G  -  1 )  ||  ( ( G Yrm  R )  -  R
) )
3321oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( H  -  R
)  =  ( ( G Yrm  R )  -  R
) )
3432, 33breqtrrd 4198 . . . . . . . 8  |-  ( ph  ->  ( G  -  1 )  ||  ( H  -  R ) )
35 jm2.27a7 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  NN0 )
3635nn0zd 10329 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ZZ )
37 peano2zm 10276 . . . . . . . . . 10  |-  ( G  e.  ZZ  ->  ( G  -  1 )  e.  ZZ )
3836, 37syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G  -  1 )  e.  ZZ )
3912, 9zsubcld 10336 . . . . . . . . 9  |-  ( ph  ->  ( H  -  R
)  e.  ZZ )
40 dvdstr 12838 . . . . . . . . 9  |-  ( ( ( 2  x.  C
)  e.  ZZ  /\  ( G  -  1
)  e.  ZZ  /\  ( H  -  R
)  e.  ZZ )  ->  ( ( ( 2  x.  C ) 
||  ( G  - 
1 )  /\  ( G  -  1 ) 
||  ( H  -  R ) )  -> 
( 2  x.  C
)  ||  ( H  -  R ) ) )
416, 38, 39, 40syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  C )  ||  ( G  -  1
)  /\  ( G  -  1 )  ||  ( H  -  R
) )  ->  (
2  x.  C ) 
||  ( H  -  R ) ) )
4216, 34, 41mp2and 661 . . . . . . 7  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  R ) )
43 congtr 26920 . . . . . . 7  |-  ( ( ( ( 2  x.  C )  e.  ZZ  /\  B  e.  ZZ )  /\  ( H  e.  ZZ  /\  R  e.  ZZ )  /\  (
( 2  x.  C
)  ||  ( B  -  H )  /\  (
2  x.  C ) 
||  ( H  -  R ) ) )  ->  ( 2  x.  C )  ||  ( B  -  R )
)
446, 8, 12, 9, 15, 42, 43syl222anc 1200 . . . . . 6  |-  ( ph  ->  ( 2  x.  C
)  ||  ( B  -  R ) )
4544orcd 382 . . . . 5  |-  ( ph  ->  ( ( 2  x.  C )  ||  ( B  -  R )  \/  ( 2  x.  C
)  ||  ( B  -  -u R ) ) )
46 jm2.27a24 . . . . . . 7  |-  ( ph  ->  Q  e.  ZZ )
47 zmulcl 10280 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  Q  e.  ZZ )  ->  ( 2  x.  Q
)  e.  ZZ )
482, 46, 47sylancr 645 . . . . . 6  |-  ( ph  ->  ( 2  x.  Q
)  e.  ZZ )
49 zsqcl 11407 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
504, 49syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
51 dvdsmul2 12827 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  ( C ^ 2 )  e.  ZZ )  -> 
( C ^ 2 )  ||  ( 2  x.  ( C ^
2 ) ) )
522, 50, 51sylancr 645 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  ||  ( 2  x.  ( C ^
2 ) ) )
53 jm2.27a10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  NN0 )
5453nn0zd 10329 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  e.  ZZ )
5554peano2zd 10334 . . . . . . . . . . . . 13  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
56 zmulcl 10280 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  ( C ^ 2 )  e.  ZZ )  -> 
( 2  x.  ( C ^ 2 ) )  e.  ZZ )
572, 50, 56sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( C ^ 2 ) )  e.  ZZ )
58 dvdsmultr2 12840 . . . . . . . . . . . . 13  |-  ( ( ( C ^ 2 )  e.  ZZ  /\  ( J  +  1
)  e.  ZZ  /\  ( 2  x.  ( C ^ 2 ) )  e.  ZZ )  -> 
( ( C ^
2 )  ||  (
2  x.  ( C ^ 2 ) )  ->  ( C ^
2 )  ||  (
( J  +  1 )  x.  ( 2  x.  ( C ^
2 ) ) ) ) )
5950, 55, 57, 58syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C ^
2 )  ||  (
2  x.  ( C ^ 2 ) )  ->  ( C ^
2 )  ||  (
( J  +  1 )  x.  ( 2  x.  ( C ^
2 ) ) ) ) )
6052, 59mpd 15 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  ||  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
611oveq1d 6055 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  =  ( ( A Yrm  P ) ^ 2 ) )
62 jm2.27a15 . . . . . . . . . . . 12  |-  ( ph  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
63 jm2.27a26 . . . . . . . . . . . 12  |-  ( ph  ->  E  =  ( A Yrm  Q ) )
6462, 63eqtr3d 2438 . . . . . . . . . . 11  |-  ( ph  ->  ( ( J  + 
1 )  x.  (
2  x.  ( C ^ 2 ) ) )  =  ( A Yrm  Q ) )
6560, 61, 643brtr3d 4201 . . . . . . . . . 10  |-  ( ph  ->  ( ( A Yrm  P ) ^ 2 )  ||  ( A Yrm  Q ) )
66 jm2.27a1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
6755zred 10331 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( J  +  1 )  e.  RR )
6857zred 10331 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( C ^ 2 ) )  e.  RR )
69 nn0p1nn 10215 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  NN0  ->  ( J  +  1 )  e.  NN )
7053, 69syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( J  +  1 )  e.  NN )
7170nngt0d 9999 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  ( J  +  1 ) )
72 2nn 10089 . . . . . . . . . . . . . . . . . 18  |-  2  e.  NN
733nnsqcld 11498 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( C ^ 2 )  e.  NN )
74 nnmulcl 9979 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  NN  /\  ( C ^ 2 )  e.  NN )  -> 
( 2  x.  ( C ^ 2 ) )  e.  NN )
7572, 73, 74sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( C ^ 2 ) )  e.  NN )
7675nngt0d 9999 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  ( 2  x.  ( C ^
2 ) ) )
7767, 68, 71, 76mulgt0d 9181 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
7877, 62breqtrrd 4198 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  E )
79 rmy0 26882 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
8066, 79syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A Yrm  0 )  =  0 )
8163eqcomd 2409 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A Yrm  Q )  =  E )
8278, 80, 813brtr4d 4202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A Yrm  0 )  < 
( A Yrm  Q ) )
83 ltrmy 26907 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  Q  e.  ZZ )  ->  (
0  <  Q  <->  ( A Yrm  0 )  <  ( A Yrm  Q ) ) )
8466, 25, 46, 83syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  <  Q  <->  ( A Yrm  0 )  <  ( A Yrm 
Q ) ) )
8582, 84mpbird 224 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  Q )
86 elnnz 10248 . . . . . . . . . . . 12  |-  ( Q  e.  NN  <->  ( Q  e.  ZZ  /\  0  < 
Q ) )
8746, 85, 86sylanbrc 646 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  NN )
883nngt0d 9999 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  C )
891eqcomd 2409 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A Yrm  P )  =  C )
9088, 80, 893brtr4d 4202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A Yrm  0 )  < 
( A Yrm  P ) )
91 ltrmy 26907 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  P  e.  ZZ )  ->  (
0  <  P  <->  ( A Yrm  0 )  <  ( A Yrm  P ) ) )
9266, 25, 10, 91syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  <  P  <->  ( A Yrm  0 )  <  ( A Yrm 
P ) ) )
9390, 92mpbird 224 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  P )
94 elnnz 10248 . . . . . . . . . . . 12  |-  ( P  e.  NN  <->  ( P  e.  ZZ  /\  0  < 
P ) )
9510, 93, 94sylanbrc 646 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
96 jm2.20nn 26958 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  Q  e.  NN  /\  P  e.  NN )  ->  (
( ( A Yrm  P ) ^ 2 )  ||  ( A Yrm  Q )  <->  ( P  x.  ( A Yrm  P ) ) 
||  Q ) )
9766, 87, 95, 96syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A Yrm  P ) ^ 2 ) 
||  ( A Yrm  Q )  <-> 
( P  x.  ( A Yrm 
P ) )  ||  Q ) )
9865, 97mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( A Yrm 
P ) )  ||  Q )
991, 4eqeltrrd 2479 . . . . . . . . . 10  |-  ( ph  ->  ( A Yrm  P )  e.  ZZ )
100 muldvds2 12830 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( A Yrm  P )  e.  ZZ  /\  Q  e.  ZZ )  ->  (
( P  x.  ( A Yrm 
P ) )  ||  Q  ->  ( A Yrm  P ) 
||  Q ) )
10110, 99, 46, 100syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( ( P  x.  ( A Yrm  P ) ) 
||  Q  ->  ( A Yrm 
P )  ||  Q
) )
10298, 101mpd 15 . . . . . . . 8  |-  ( ph  ->  ( A Yrm  P )  ||  Q )
1031, 102eqbrtrd 4192 . . . . . . 7  |-  ( ph  ->  C  ||  Q )
1042a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  ZZ )
105 dvdscmul 12831 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  Q  e.  ZZ  /\  2  e.  ZZ )  ->  ( C  ||  Q  ->  (
2  x.  C ) 
||  ( 2  x.  Q ) ) )
1064, 46, 104, 105syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( C  ||  Q  ->  ( 2  x.  C
)  ||  ( 2  x.  Q ) ) )
107103, 106mpd 15 . . . . . 6  |-  ( ph  ->  ( 2  x.  C
)  ||  ( 2  x.  Q ) )
108 jm2.27a25 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( A Xrm  Q ) )
109 jm2.27a6 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  NN0 )
110109nn0zd 10329 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
111108, 110eqeltrrd 2479 . . . . . . . . 9  |-  ( ph  ->  ( A Xrm  Q )  e.  ZZ )
112 frmy 26867 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
113112fovcl 6134 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  R  e.  ZZ )  ->  ( A Yrm 
R )  e.  ZZ )
11466, 9, 113syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( A Yrm  R )  e.  ZZ )
11521, 12eqeltrrd 2479 . . . . . . . . 9  |-  ( ph  ->  ( G Yrm  R )  e.  ZZ )
116 eluzelz 10452 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
11766, 116syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
118 jm2.27a16 . . . . . . . . . . . 12  |-  ( ph  ->  F  ||  ( G  -  A ) )
119 congsym 26923 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ZZ  /\  G  e.  ZZ )  /\  ( A  e.  ZZ  /\  F  ||  ( G  -  A
) ) )  ->  F  ||  ( A  -  G ) )
120110, 36, 117, 118, 119syl22anc 1185 . . . . . . . . . . 11  |-  ( ph  ->  F  ||  ( A  -  G ) )
121108, 120eqbrtrrd 4194 . . . . . . . . . 10  |-  ( ph  ->  ( A Xrm  Q )  ||  ( A  -  G
) )
122 jm2.15nn0 26964 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )  /\  R  e.  NN0 )  ->  ( A  -  G )  ||  (
( A Yrm  R )  -  ( G Yrm  R ) ) )
12366, 17, 30, 122syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  G
)  ||  ( ( A Yrm 
R )  -  ( G Yrm 
R ) ) )
124117, 36zsubcld 10336 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  G
)  e.  ZZ )
125114, 115zsubcld 10336 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A Yrm  R )  -  ( G Yrm  R ) )  e.  ZZ )
126 dvdstr 12838 . . . . . . . . . . 11  |-  ( ( ( A Xrm  Q )  e.  ZZ  /\  ( A  -  G )  e.  ZZ  /\  ( ( A Yrm  R )  -  ( G Yrm 
R ) )  e.  ZZ )  ->  (
( ( A Xrm  Q ) 
||  ( A  -  G )  /\  ( A  -  G )  ||  ( ( A Yrm  R )  -  ( G Yrm  R ) ) )  ->  ( A Xrm 
Q )  ||  (
( A Yrm  R )  -  ( G Yrm  R ) ) ) )
127111, 124, 125, 126syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A Xrm  Q )  ||  ( A  -  G )  /\  ( A  -  G
)  ||  ( ( A Yrm 
R )  -  ( G Yrm 
R ) ) )  ->  ( A Xrm  Q ) 
||  ( ( A Yrm  R )  -  ( G Yrm  R ) ) ) )
128121, 123, 127mp2and 661 . . . . . . . . 9  |-  ( ph  ->  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( G Yrm  R ) ) )
129 jm2.27a18 . . . . . . . . . 10  |-  ( ph  ->  F  ||  ( H  -  C ) )
13021, 1oveq12d 6058 . . . . . . . . . 10  |-  ( ph  ->  ( H  -  C
)  =  ( ( G Yrm  R )  -  ( A Yrm 
P ) ) )
131129, 108, 1303brtr3d 4201 . . . . . . . . 9  |-  ( ph  ->  ( A Xrm  Q )  ||  ( ( G Yrm  R )  -  ( A Yrm  P ) ) )
132 congtr 26920 . . . . . . . . 9  |-  ( ( ( ( A Xrm  Q )  e.  ZZ  /\  ( A Yrm 
R )  e.  ZZ )  /\  ( ( G Yrm  R )  e.  ZZ  /\  ( A Yrm  P )  e.  ZZ )  /\  (
( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( G Yrm  R ) )  /\  ( A Xrm  Q )  ||  ( ( G Yrm  R )  -  ( A Yrm 
P ) ) ) )  ->  ( A Xrm  Q
)  ||  ( ( A Yrm 
R )  -  ( A Yrm 
P ) ) )
133111, 114, 115, 99, 128, 131, 132syl222anc 1200 . . . . . . . 8  |-  ( ph  ->  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( A Yrm  P ) ) )
134133orcd 382 . . . . . . 7  |-  ( ph  ->  ( ( A Xrm  Q ) 
||  ( ( A Yrm  R )  -  ( A Yrm  P ) )  \/  ( A Xrm 
Q )  ||  (
( A Yrm  R )  -  -u ( A Yrm  P ) ) ) )
135 jm2.26 26963 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  Q  e.  NN )  /\  ( R  e.  ZZ  /\  P  e.  ZZ ) )  ->  ( (
( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( A Yrm  P ) )  \/  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  -u ( A Yrm 
P ) ) )  <-> 
( ( 2  x.  Q )  ||  ( R  -  P )  \/  ( 2  x.  Q
)  ||  ( R  -  -u P ) ) ) )
13666, 87, 9, 10, 135syl22anc 1185 . . . . . . 7  |-  ( ph  ->  ( ( ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( A Yrm 
P ) )  \/  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  -u ( A Yrm  P ) ) )  <->  ( (
2  x.  Q ) 
||  ( R  -  P )  \/  (
2  x.  Q ) 
||  ( R  -  -u P ) ) ) )
137134, 136mpbid 202 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  Q )  ||  ( R  -  P )  \/  ( 2  x.  Q
)  ||  ( R  -  -u P ) ) )
138 dvdsacongtr 26939 . . . . . 6  |-  ( ( ( ( 2  x.  Q )  e.  ZZ  /\  R  e.  ZZ )  /\  ( P  e.  ZZ  /\  ( 2  x.  C )  e.  ZZ )  /\  (
( 2  x.  C
)  ||  ( 2  x.  Q )  /\  ( ( 2  x.  Q )  ||  ( R  -  P )  \/  ( 2  x.  Q
)  ||  ( R  -  -u P ) ) ) )  ->  (
( 2  x.  C
)  ||  ( R  -  P )  \/  (
2  x.  C ) 
||  ( R  -  -u P ) ) )
13948, 9, 10, 6, 107, 137, 138syl222anc 1200 . . . . 5  |-  ( ph  ->  ( ( 2  x.  C )  ||  ( R  -  P )  \/  ( 2  x.  C
)  ||  ( R  -  -u P ) ) )
140 acongtr 26933 . . . . 5  |-  ( ( ( ( 2  x.  C )  e.  ZZ  /\  B  e.  ZZ )  /\  ( R  e.  ZZ  /\  P  e.  ZZ )  /\  (
( ( 2  x.  C )  ||  ( B  -  R )  \/  ( 2  x.  C
)  ||  ( B  -  -u R ) )  /\  ( ( 2  x.  C )  ||  ( R  -  P
)  \/  ( 2  x.  C )  ||  ( R  -  -u P
) ) ) )  ->  ( ( 2  x.  C )  ||  ( B  -  P
)  \/  ( 2  x.  C )  ||  ( B  -  -u P
) ) )
1416, 8, 9, 10, 45, 139, 140syl222anc 1200 . . . 4  |-  ( ph  ->  ( ( 2  x.  C )  ||  ( B  -  P )  \/  ( 2  x.  C
)  ||  ( B  -  -u P ) ) )
1427nnnn0d 10230 . . . . . 6  |-  ( ph  ->  B  e.  NN0 )
1433nnnn0d 10230 . . . . . 6  |-  ( ph  ->  C  e.  NN0 )
144 jm2.27a20 . . . . . 6  |-  ( ph  ->  B  <_  C )
145 elfz2nn0 11038 . . . . . 6  |-  ( B  e.  ( 0 ... C )  <->  ( B  e.  NN0  /\  C  e. 
NN0  /\  B  <_  C ) )
146142, 143, 144, 145syl3anbrc 1138 . . . . 5  |-  ( ph  ->  B  e.  ( 0 ... C ) )
14795nnnn0d 10230 . . . . . 6  |-  ( ph  ->  P  e.  NN0 )
148 rmygeid 26919 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  P  e.  NN0 )  ->  P  <_  ( A Yrm  P ) )
14966, 147, 148syl2anc 643 . . . . . . 7  |-  ( ph  ->  P  <_  ( A Yrm  P
) )
150149, 1breqtrrd 4198 . . . . . 6  |-  ( ph  ->  P  <_  C )
151 elfz2nn0 11038 . . . . . 6  |-  ( P  e.  ( 0 ... C )  <->  ( P  e.  NN0  /\  C  e. 
NN0  /\  P  <_  C ) )
152147, 143, 150, 151syl3anbrc 1138 . . . . 5  |-  ( ph  ->  P  e.  ( 0 ... C ) )
153 acongeq 26938 . . . . 5  |-  ( ( C  e.  NN  /\  B  e.  ( 0 ... C )  /\  P  e.  ( 0 ... C ) )  ->  ( B  =  P  <->  ( ( 2  x.  C )  ||  ( B  -  P
)  \/  ( 2  x.  C )  ||  ( B  -  -u P
) ) ) )
1543, 146, 152, 153syl3anc 1184 . . . 4  |-  ( ph  ->  ( B  =  P  <-> 
( ( 2  x.  C )  ||  ( B  -  P )  \/  ( 2  x.  C
)  ||  ( B  -  -u P ) ) ) )
155141, 154mpbird 224 . . 3  |-  ( ph  ->  B  =  P )
156155oveq2d 6056 . 2  |-  ( ph  ->  ( A Yrm  B )  =  ( A Yrm  P ) )
1571, 156eqtr4d 2439 1  |-  ( ph  ->  C  =  ( A Yrm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   -ucneg 9248   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   ^cexp 11337    || cdivides 12807   Xrm crmx 26853   Yrm crmy 26854
This theorem is referenced by:  jm2.27b  26967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-numer 13082  df-denom 13083  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-squarenn 26794  df-pell1qr 26795  df-pell14qr 26796  df-pell1234qr 26797  df-pellfund 26798  df-rmx 26855  df-rmy 26856
  Copyright terms: Public domain W3C validator