Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26lem3 Structured version   Unicode version

Theorem jm2.26lem3 29348
Description: Lemma for jm2.26 29349. Use acongrep 29321 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.26lem3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )  ->  K  =  M )

Proof of Theorem jm2.26lem3
StepHypRef Expression
1 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  A  e.  ( ZZ>= ` 
2 ) )
2 elfzelz 11452 . . . . . . . . . . . 12  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
32adantr 465 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  ZZ )
43ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  ZZ )
5 rmyabs 29299 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( abs `  ( A Yrm  K ) )  =  ( A Yrm  ( abs `  K ) ) )
61, 4, 5syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
K ) )  =  ( A Yrm  ( abs `  K
) ) )
73zred 10746 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  RR )
87ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  RR )
9 elfzle1 11453 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
109adantr 465 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  0  <_  K
)
1110ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
0  <_  K )
128, 11absidd 12908 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  K
)  =  K )
1312oveq2d 6106 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( abs `  K
) )  =  ( A Yrm  K ) )
146, 13eqtrd 2474 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
K ) )  =  ( A Yrm  K ) )
15 elfzelz 11452 . . . . . . . . . . . 12  |-  ( M  e.  ( 0 ... N )  ->  M  e.  ZZ )
1615adantl 466 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  ZZ )
1716ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ZZ )
18 rmyabs 29299 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
191, 17, 18syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
M ) )  =  ( A Yrm  ( abs `  M
) ) )
2016zred 10746 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  RR )
2120ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  RR )
22 elfzle1 11453 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  0  <_  M )
2322adantl 466 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  0  <_  M
)
2423ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
0  <_  M )
2521, 24absidd 12908 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  M
)  =  M )
2625oveq2d 6106 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( abs `  M
) )  =  ( A Yrm  M ) )
2719, 26eqtrd 2474 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
M ) )  =  ( A Yrm  M ) )
2814, 27oveq12d 6108 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  =  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )
29 frmy 29253 . . . . . . . . . . . 12  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
3029fovcl 6194 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( A Yrm 
K )  e.  ZZ )
311, 4, 30syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  ZZ )
3231zred 10746 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  RR )
3329fovcl 6194 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
341, 17, 33syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  ZZ )
3534zred 10746 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  RR )
3632, 35readdcld 9412 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  e.  RR )
37 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  NN )
3837nnzd 10745 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  ZZ )
39 peano2zm 10687 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
4038, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( N  -  1 )  e.  ZZ )
4129fovcl 6194 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
421, 40, 41syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
4342zred 10746 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( N  - 
1 ) )  e.  RR )
4429fovcl 6194 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
451, 38, 44syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  N )  e.  ZZ )
4645zred 10746 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  N )  e.  RR )
4743, 46readdcld 9412 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  e.  RR )
48 frmx 29252 . . . . . . . . . . 11  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
4948fovcl 6194 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
501, 38, 49syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Xrm  N )  e. 
NN0 )
5150nn0red 10636 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Xrm  N )  e.  RR )
52 elfzle2 11454 . . . . . . . . . . . 12  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  <_  ( N  -  1 ) )
5352adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  K  <_  ( N  -  1 ) )
54 lermy 29296 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  ( K  <_  ( N  - 
1 )  <->  ( A Yrm  K
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
551, 4, 40, 54syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  <_  ( N  -  1 )  <-> 
( A Yrm  K )  <_ 
( A Yrm  ( N  - 
1 ) ) ) )
5655adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( K  <_  ( N  - 
1 )  <->  ( A Yrm  K
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
5753, 56mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A Yrm 
K )  <_  ( A Yrm  ( N  -  1 ) ) )
58 simplrr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ( 0 ... N ) )
59 elfzle2 11454 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  M  <_  N )
6058, 59syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  <_  N )
61 lermy 29296 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( A Yrm  M
)  <_  ( A Yrm  N
) ) )
621, 17, 38, 61syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( M  <_  N  <->  ( A Yrm  M )  <_  ( A Yrm 
N ) ) )
6360, 62mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  <_ 
( A Yrm  N ) )
6463adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A Yrm 
M )  <_  ( A Yrm 
N ) )
65 le2add 9820 . . . . . . . . . . . 12  |-  ( ( ( ( A Yrm  K )  e.  RR  /\  ( A Yrm 
M )  e.  RR )  /\  ( ( A Yrm  ( N  -  1 ) )  e.  RR  /\  ( A Yrm  N )  e.  RR ) )  -> 
( ( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6632, 35, 43, 46, 65syl22anc 1219 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6766adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N ) )  ->  ( ( A Yrm 
K )  +  ( A Yrm  M ) )  <_ 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6857, 64, 67mp2and 679 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
6931zcnd 10747 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  CC )
7034zcnd 10747 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  CC )
7169, 70addcomd 9570 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  =  ( ( A Yrm  M )  +  ( A Yrm  K ) ) )
7271adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  =  ( ( A Yrm  M )  +  ( A Yrm  K ) ) )
73 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( K  =/=  M  ->  K  =/=  M )
7473necomd 2694 . . . . . . . . . . . . . . . . . 18  |-  ( K  =/=  M  ->  M  =/=  K )
7574adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( K  =/=  M  /\  K  =  N )  ->  M  =/=  K )
76 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( K  =/=  M  /\  K  =  N )  ->  K  =  N )
7775, 76neeqtrd 2629 . . . . . . . . . . . . . . . 16  |-  ( ( K  =/=  M  /\  K  =  N )  ->  M  =/=  N )
7877neneqd 2623 . . . . . . . . . . . . . . 15  |-  ( ( K  =/=  M  /\  K  =  N )  ->  -.  M  =  N )
7978adantll 713 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  -.  M  =  N )
80 nnnn0 10585 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  NN0 )
81 nn0uz 10894 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
8280, 81syl6eleq 2532 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  0 )
)
8382ad4antlr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  N  e.  ( ZZ>= `  0 )
)
84 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  ( 0 ... N
) )
8584ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  e.  ( 0 ... N
) )
86 fzm1 11539 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( M  e.  ( 0 ... N
)  <->  ( M  e.  ( 0 ... ( N  -  1 ) )  \/  M  =  N ) ) )
8786biimpa 484 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  M  e.  ( 0 ... N
) )  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  \/  M  =  N ) )
8883, 85, 87syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  \/  M  =  N ) )
89 orel2 383 . . . . . . . . . . . . . 14  |-  ( -.  M  =  N  -> 
( ( M  e.  ( 0 ... ( N  -  1 ) )  \/  M  =  N )  ->  M  e.  ( 0 ... ( N  -  1 ) ) ) )
9079, 88, 89sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  e.  ( 0 ... ( N  -  1 ) ) )
91 elfzle2 11454 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... ( N  -  1 ) )  ->  M  <_  ( N  -  1 ) )
9290, 91syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  <_  ( N  -  1 ) )
93 lermy 29296 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  ( M  <_  ( N  - 
1 )  <->  ( A Yrm  M
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
941, 17, 40, 93syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( M  <_  ( N  -  1 )  <-> 
( A Yrm  M )  <_ 
( A Yrm  ( N  - 
1 ) ) ) )
9594adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( M  <_  ( N  - 
1 )  <->  ( A Yrm  M
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
9692, 95mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( A Yrm 
M )  <_  ( A Yrm  ( N  -  1 ) ) )
97 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  ( 0 ... N ) )
98 elfzle2 11454 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
9997, 98syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  <_  N )
100 lermy 29296 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <_  N  <->  ( A Yrm  K
)  <_  ( A Yrm  N
) ) )
1011, 4, 38, 100syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  <_  N  <->  ( A Yrm  K )  <_  ( A Yrm 
N ) ) )
10299, 101mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  <_ 
( A Yrm  N ) )
103102adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( A Yrm 
K )  <_  ( A Yrm 
N ) )
104 le2add 9820 . . . . . . . . . . . . 13  |-  ( ( ( ( A Yrm  M )  e.  RR  /\  ( A Yrm 
K )  e.  RR )  /\  ( ( A Yrm  ( N  -  1 ) )  e.  RR  /\  ( A Yrm  N )  e.  RR ) )  -> 
( ( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
10535, 32, 43, 46, 104syl22anc 1219 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
106105adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N ) )  ->  ( ( A Yrm 
M )  +  ( A Yrm  K ) )  <_ 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
10796, 103, 106mp2and 679 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
10872, 107eqbrtrd 4311 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
10937nnnn0d 10635 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  NN0 )
110109, 81syl6eleq 2532 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  ( ZZ>= ` 
0 ) )
111 fzm1 11539 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... N
)  <->  ( K  e.  ( 0 ... ( N  -  1 ) )  \/  K  =  N ) ) )
112111biimpa 484 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... ( N  - 
1 ) )  \/  K  =  N ) )
113110, 97, 112syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  e.  ( 0 ... ( N  -  1 ) )  \/  K  =  N ) )
11468, 108, 113mpjaodan 784 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
115 jm2.24 29304 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
1161, 38, 115syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
11736, 47, 51, 114, 116lelttrd 9528 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  <  ( A Xrm  N ) )
11828, 117eqbrtrd 4311 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
119 simpr 461 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  =/=  M )
120 rmyeq 29295 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  =  M  <->  ( A Yrm  K
)  =  ( A Yrm  M ) ) )
121120necon3bid 2642 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  =/=  M  <->  ( A Yrm  K
)  =/=  ( A Yrm  M ) ) )
1221, 4, 17, 121syl3anc 1218 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  =/=  M  <->  ( A Yrm  K )  =/=  ( A Yrm 
M ) ) )
123119, 122mpbid 210 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  ( A Yrm  M ) )
1247ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  e.  RR )
125 0re 9385 . . . . . . . . . . . . . 14  |-  0  e.  RR
126125a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  0  e.  RR )
127 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  -u M )
12822ad2antll 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  0  <_  M )
12920adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  RR )
130129le0neg2d 9911 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
0  <_  M  <->  -u M  <_ 
0 ) )
131128, 130mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  -u M  <_  0 )
132131adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  -u M  <_  0
)
133127, 132eqbrtrd 4311 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  <_  0
)
13410ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  0  <_  K
)
135 letri3 9459 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  0  e.  RR )  ->  ( K  =  0  <-> 
( K  <_  0  /\  0  <_  K ) ) )
136135biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  RR  /\  0  e.  RR )  /\  ( K  <_ 
0  /\  0  <_  K ) )  ->  K  =  0 )
137124, 126, 133, 134, 136syl22anc 1219 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  0 )
138 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  0 )
139 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  -u M )
140139, 138eqtr3d 2476 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  -u M  =  0 )
141129recnd 9411 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  CC )
142141ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  M  e.  CC )
143142negeq0d 9710 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  ( M  =  0  <->  -u M  =  0 ) )
144140, 143mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  M  =  0 )
145138, 144eqtr4d 2477 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  M )
146137, 145mpdan 668 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  M )
147146ex 434 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =  -u M  ->  K  =  M )
)
148147necon3d 2645 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  K  =/=  -u M ) )
149148imp 429 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  =/=  -u M )
15058, 15syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ZZ )
151150znegcld 10748 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  -u M  e.  ZZ )
152 rmyeq 29295 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  -u M  e.  ZZ )  ->  ( K  =  -u M  <->  ( A Yrm  K
)  =  ( A Yrm  -u M ) ) )
153152necon3bid 2642 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  -u M  e.  ZZ )  ->  ( K  =/=  -u M  <->  ( A Yrm  K
)  =/=  ( A Yrm  -u M ) ) )
1541, 4, 151, 153syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  =/=  -u M  <->  ( A Yrm  K )  =/=  ( A Yrm  -u M ) ) )
155149, 154mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  ( A Yrm  -u M ) )
156 rmyneg 29267 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm  -u M )  =  -u ( A Yrm  M ) )
1571, 17, 156syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  -u M )  = 
-u ( A Yrm  M ) )
158155, 157neeqtrd 2629 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  -u ( A Yrm  M ) )
159118, 123, 1583jca 1168 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )
160159ex 434 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  (
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) ) )
161 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
1623ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  K  e.  ZZ )
163161, 162, 30syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  e.  ZZ )
164163zcnd 10747 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  e.  CC )
16516ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  M  e.  ZZ )
166161, 165, 33syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
M )  e.  ZZ )
167166zcnd 10747 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
M )  e.  CC )
168164, 167negsubd 9724 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  + 
-u ( A Yrm  M ) )  =  ( ( A Yrm  K )  -  ( A Yrm 
M ) ) )
169168fveq2d 5694 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  =  ( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) ) )
170167negcld 9705 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -u ( A Yrm 
M )  e.  CC )
171164, 170addcld 9404 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  + 
-u ( A Yrm  M ) )  e.  CC )
172171abscld 12921 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  e.  RR )
173164abscld 12921 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  K ) )  e.  RR )
174167abscld 12921 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
175173, 174readdcld 9412 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  e.  RR )
176 nnz 10667 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  ZZ )
177176adantl 466 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  ZZ )
178177ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  N  e.  ZZ )
17949nn0zd 10744 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  ZZ )
180161, 178, 179syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Xrm 
N )  e.  ZZ )
181180zred 10746 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Xrm 
N )  e.  RR )
182164, 170abstrid 12941 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <_  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  -u ( A Yrm 
M ) ) ) )
183 absneg 12765 . . . . . . . . . . . . . . 15  |-  ( ( A Yrm  M )  e.  CC  ->  ( abs `  -u ( A Yrm 
M ) )  =  ( abs `  ( A Yrm 
M ) ) )
184183eqcomd 2447 . . . . . . . . . . . . . 14  |-  ( ( A Yrm  M )  e.  CC  ->  ( abs `  ( A Yrm 
M ) )  =  ( abs `  -u ( A Yrm 
M ) ) )
185167, 184syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  =  ( abs `  -u ( A Yrm  M ) ) )
186185oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  =  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  -u ( A Yrm 
M ) ) ) )
187182, 186breqtrrd 4317 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <_  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) ) )
188 simpr1 994 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
189172, 175, 181, 187, 188lelttrd 9528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
190169, 189eqbrtrrd 4313 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )  < 
( A Xrm  N ) )
191163, 166zsubcld 10751 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  e.  ZZ )
192191zcnd 10747 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  e.  CC )
193192abscld 12921 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )  e.  RR )
194193, 181ltnled 9520 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) )  <  ( A Xrm  N )  <->  -.  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
195190, 194mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  <_ 
( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) ) )
196 simpr2 995 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  =/=  ( A Yrm 
M ) )
197164, 167, 196subne0d 9727 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  =/=  0 )
198 dvdsleabs 13578 . . . . . . . . 9  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  e.  ZZ  /\  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  =/=  0 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
199180, 191, 197, 198syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
200195, 199mtod 177 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )
201164, 167subnegd 9725 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )
202201fveq2d 5694 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  =  ( abs `  (
( A Yrm  K )  +  ( A Yrm  M ) ) ) )
203164, 167addcld 9404 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  e.  CC )
204203abscld 12921 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  e.  RR )
205164, 167abstrid 12941 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  <_ 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) ) )
206204, 175, 181, 205, 188lelttrd 9528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  < 
( A Xrm  N ) )
207202, 206eqbrtrd 4311 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
208166znegcld 10748 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -u ( A Yrm 
M )  e.  ZZ )
209163, 208zsubcld 10751 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  e.  ZZ )
210209zcnd 10747 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  e.  CC )
211210abscld 12921 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  e.  RR )
212211, 181ltnled 9520 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) )  <  ( A Xrm  N )  <->  -.  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
213207, 212mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  <_ 
( abs `  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
214 simpr3 996 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  =/=  -u ( A Yrm 
M ) )
215164, 170, 214subne0d 9727 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  =/=  0 )
216 dvdsleabs 13578 . . . . . . . . 9  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  e.  ZZ  /\  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  =/=  0 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
217180, 209, 215, 216syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
218213, 217mtod 177 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )
219200, 218jca 532 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  /\  -.  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
220 pm4.56 495 . . . . . 6  |-  ( ( -.  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  /\  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )  <->  -.  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )
221219, 220sylib 196 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
222221ex 434 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) )  ->  -.  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) ) )
223160, 222syld 44 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  -.  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
224223necon4ad 2671 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) )  ->  K  =  M ) )
2252243impia 1184 1  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )  ->  K  =  M )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2605   class class class wbr 4291   ` cfv 5417  (class class class)co 6090   CCcc 9279   RRcr 9280   0cc0 9281   1c1 9282    + caddc 9284    < clt 9417    <_ cle 9418    - cmin 9594   -ucneg 9595   NNcn 10321   2c2 10370   NN0cn0 10578   ZZcz 10645   ZZ>=cuz 10860   ...cfz 11436   abscabs 12722    || cdivides 13534   Xrm crmx 29239   Yrm crmy 29240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359  ax-addf 9360  ax-mulf 9361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-omul 6924  df-er 7100  df-map 7215  df-pm 7216  df-ixp 7263  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-fsupp 7620  df-fi 7660  df-sup 7690  df-oi 7723  df-card 8108  df-acn 8111  df-cda 8336  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-10 10387  df-n0 10579  df-z 10646  df-dec 10755  df-uz 10861  df-q 10953  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ioo 11303  df-ioc 11304  df-ico 11305  df-icc 11306  df-fz 11437  df-fzo 11548  df-fl 11641  df-mod 11708  df-seq 11806  df-exp 11865  df-fac 12051  df-bc 12078  df-hash 12103  df-shft 12555  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-limsup 12948  df-clim 12965  df-rlim 12966  df-sum 13163  df-ef 13352  df-sin 13354  df-cos 13355  df-pi 13357  df-dvds 13535  df-gcd 13690  df-numer 13812  df-denom 13813  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-starv 14252  df-sca 14253  df-vsca 14254  df-ip 14255  df-tset 14256  df-ple 14257  df-ds 14259  df-unif 14260  df-hom 14261  df-cco 14262  df-rest 14360  df-topn 14361  df-0g 14379  df-gsum 14380  df-topgen 14381  df-pt 14382  df-prds 14385  df-xrs 14439  df-qtop 14444  df-imas 14445  df-xps 14447  df-mre 14523  df-mrc 14524  df-acs 14526  df-mnd 15414  df-submnd 15464  df-mulg 15547  df-cntz 15834  df-cmn 16278  df-psmet 17808  df-xmet 17809  df-met 17810  df-bl 17811  df-mopn 17812  df-fbas 17813  df-fg 17814  df-cnfld 17818  df-top 18502  df-bases 18504  df-topon 18505  df-topsp 18506  df-cld 18622  df-ntr 18623  df-cls 18624  df-nei 18701  df-lp 18739  df-perf 18740  df-cn 18830  df-cnp 18831  df-haus 18918  df-tx 19134  df-hmeo 19327  df-fil 19418  df-fm 19510  df-flim 19511  df-flf 19512  df-xms 19894  df-ms 19895  df-tms 19896  df-cncf 20453  df-limc 21340  df-dv 21341  df-log 22007  df-squarenn 29180  df-pell1qr 29181  df-pell14qr 29182  df-pell1234qr 29183  df-pellfund 29184  df-rmx 29241  df-rmy 29242
This theorem is referenced by:  jm2.26  29349
  Copyright terms: Public domain W3C validator