Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26lem3 Structured version   Visualization version   Unicode version

Theorem jm2.26lem3 35927
Description: Lemma for jm2.26 35928. Use acongrep 35901 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.26lem3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )  ->  K  =  M )

Proof of Theorem jm2.26lem3
StepHypRef Expression
1 simplll 776 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  A  e.  ( ZZ>= ` 
2 ) )
2 elfzelz 11826 . . . . . . . . . . . 12  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
32adantr 472 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  ZZ )
43ad2antlr 741 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  ZZ )
5 rmyabs 35879 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( abs `  ( A Yrm  K ) )  =  ( A Yrm  ( abs `  K ) ) )
61, 4, 5syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
K ) )  =  ( A Yrm  ( abs `  K
) ) )
73zred 11063 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  RR )
87ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  RR )
9 elfzle1 11828 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
109adantr 472 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  0  <_  K
)
1110ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
0  <_  K )
128, 11absidd 13561 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  K
)  =  K )
1312oveq2d 6324 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( abs `  K
) )  =  ( A Yrm  K ) )
146, 13eqtrd 2505 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
K ) )  =  ( A Yrm  K ) )
15 elfzelz 11826 . . . . . . . . . . . 12  |-  ( M  e.  ( 0 ... N )  ->  M  e.  ZZ )
1615adantl 473 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  ZZ )
1716ad2antlr 741 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ZZ )
18 rmyabs 35879 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
191, 17, 18syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
M ) )  =  ( A Yrm  ( abs `  M
) ) )
2016zred 11063 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  RR )
2120ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  RR )
22 elfzle1 11828 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  0  <_  M )
2322adantl 473 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  0  <_  M
)
2423ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
0  <_  M )
2521, 24absidd 13561 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  M
)  =  M )
2625oveq2d 6324 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( abs `  M
) )  =  ( A Yrm  M ) )
2719, 26eqtrd 2505 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
M ) )  =  ( A Yrm  M ) )
2814, 27oveq12d 6326 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  =  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )
29 frmy 35833 . . . . . . . . . . . 12  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
3029fovcl 6420 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( A Yrm 
K )  e.  ZZ )
311, 4, 30syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  ZZ )
3231zred 11063 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  RR )
3329fovcl 6420 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
341, 17, 33syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  ZZ )
3534zred 11063 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  RR )
3632, 35readdcld 9688 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  e.  RR )
37 simpllr 777 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  NN )
3837nnzd 11062 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  ZZ )
39 peano2zm 11004 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
4038, 39syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( N  -  1 )  e.  ZZ )
4129fovcl 6420 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
421, 40, 41syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
4342zred 11063 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( N  - 
1 ) )  e.  RR )
4429fovcl 6420 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
451, 38, 44syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  N )  e.  ZZ )
4645zred 11063 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  N )  e.  RR )
4743, 46readdcld 9688 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  e.  RR )
48 frmx 35832 . . . . . . . . . . 11  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
4948fovcl 6420 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
501, 38, 49syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Xrm  N )  e. 
NN0 )
5150nn0red 10950 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Xrm  N )  e.  RR )
52 elfzle2 11829 . . . . . . . . . . . 12  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  <_  ( N  -  1 ) )
5352adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  K  <_  ( N  -  1 ) )
54 lermy 35876 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  ( K  <_  ( N  - 
1 )  <->  ( A Yrm  K
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
551, 4, 40, 54syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  <_  ( N  -  1 )  <-> 
( A Yrm  K )  <_ 
( A Yrm  ( N  - 
1 ) ) ) )
5655adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( K  <_  ( N  - 
1 )  <->  ( A Yrm  K
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
5753, 56mpbid 215 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A Yrm 
K )  <_  ( A Yrm  ( N  -  1 ) ) )
58 simplrr 779 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ( 0 ... N ) )
59 elfzle2 11829 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  M  <_  N )
6058, 59syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  <_  N )
61 lermy 35876 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( A Yrm  M
)  <_  ( A Yrm  N
) ) )
621, 17, 38, 61syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( M  <_  N  <->  ( A Yrm  M )  <_  ( A Yrm 
N ) ) )
6360, 62mpbid 215 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  <_ 
( A Yrm  N ) )
6463adantr 472 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A Yrm 
M )  <_  ( A Yrm 
N ) )
65 le2add 10117 . . . . . . . . . . . 12  |-  ( ( ( ( A Yrm  K )  e.  RR  /\  ( A Yrm 
M )  e.  RR )  /\  ( ( A Yrm  ( N  -  1 ) )  e.  RR  /\  ( A Yrm  N )  e.  RR ) )  -> 
( ( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6632, 35, 43, 46, 65syl22anc 1293 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6766adantr 472 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N ) )  ->  ( ( A Yrm 
K )  +  ( A Yrm  M ) )  <_ 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6857, 64, 67mp2and 693 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
6931zcnd 11064 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  CC )
7034zcnd 11064 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  CC )
7169, 70addcomd 9853 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  =  ( ( A Yrm  M )  +  ( A Yrm  K ) ) )
7271adantr 472 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  =  ( ( A Yrm  M )  +  ( A Yrm  K ) ) )
73 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( K  =/=  M  ->  K  =/=  M )
7473necomd 2698 . . . . . . . . . . . . . . . . . 18  |-  ( K  =/=  M  ->  M  =/=  K )
7574adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( K  =/=  M  /\  K  =  N )  ->  M  =/=  K )
76 simpr 468 . . . . . . . . . . . . . . . . 17  |-  ( ( K  =/=  M  /\  K  =  N )  ->  K  =  N )
7775, 76neeqtrd 2712 . . . . . . . . . . . . . . . 16  |-  ( ( K  =/=  M  /\  K  =  N )  ->  M  =/=  N )
7877neneqd 2648 . . . . . . . . . . . . . . 15  |-  ( ( K  =/=  M  /\  K  =  N )  ->  -.  M  =  N )
7978adantll 728 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  -.  M  =  N )
80 nnnn0 10900 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  NN0 )
81 nn0uz 11217 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
8280, 81syl6eleq 2559 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  0 )
)
8382ad4antlr 747 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  N  e.  ( ZZ>= `  0 )
)
84 simprr 774 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  ( 0 ... N
) )
8584ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  e.  ( 0 ... N
) )
86 fzm1 11900 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( M  e.  ( 0 ... N
)  <->  ( M  e.  ( 0 ... ( N  -  1 ) )  \/  M  =  N ) ) )
8786biimpa 492 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  M  e.  ( 0 ... N
) )  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  \/  M  =  N ) )
8883, 85, 87syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  \/  M  =  N ) )
89 orel2 390 . . . . . . . . . . . . . 14  |-  ( -.  M  =  N  -> 
( ( M  e.  ( 0 ... ( N  -  1 ) )  \/  M  =  N )  ->  M  e.  ( 0 ... ( N  -  1 ) ) ) )
9079, 88, 89sylc 61 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  e.  ( 0 ... ( N  -  1 ) ) )
91 elfzle2 11829 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... ( N  -  1 ) )  ->  M  <_  ( N  -  1 ) )
9290, 91syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  <_  ( N  -  1 ) )
93 lermy 35876 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  ( M  <_  ( N  - 
1 )  <->  ( A Yrm  M
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
941, 17, 40, 93syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( M  <_  ( N  -  1 )  <-> 
( A Yrm  M )  <_ 
( A Yrm  ( N  - 
1 ) ) ) )
9594adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( M  <_  ( N  - 
1 )  <->  ( A Yrm  M
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
9692, 95mpbid 215 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( A Yrm 
M )  <_  ( A Yrm  ( N  -  1 ) ) )
97 simplrl 778 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  ( 0 ... N ) )
98 elfzle2 11829 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
9997, 98syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  <_  N )
100 lermy 35876 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <_  N  <->  ( A Yrm  K
)  <_  ( A Yrm  N
) ) )
1011, 4, 38, 100syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  <_  N  <->  ( A Yrm  K )  <_  ( A Yrm 
N ) ) )
10299, 101mpbid 215 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  <_ 
( A Yrm  N ) )
103102adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( A Yrm 
K )  <_  ( A Yrm 
N ) )
104 le2add 10117 . . . . . . . . . . . . 13  |-  ( ( ( ( A Yrm  M )  e.  RR  /\  ( A Yrm 
K )  e.  RR )  /\  ( ( A Yrm  ( N  -  1 ) )  e.  RR  /\  ( A Yrm  N )  e.  RR ) )  -> 
( ( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
10535, 32, 43, 46, 104syl22anc 1293 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
106105adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N ) )  ->  ( ( A Yrm 
M )  +  ( A Yrm  K ) )  <_ 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
10796, 103, 106mp2and 693 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
10872, 107eqbrtrd 4416 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
10937nnnn0d 10949 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  NN0 )
110109, 81syl6eleq 2559 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  ( ZZ>= ` 
0 ) )
111 fzm1 11900 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... N
)  <->  ( K  e.  ( 0 ... ( N  -  1 ) )  \/  K  =  N ) ) )
112111biimpa 492 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... ( N  - 
1 ) )  \/  K  =  N ) )
113110, 97, 112syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  e.  ( 0 ... ( N  -  1 ) )  \/  K  =  N ) )
11468, 108, 113mpjaodan 803 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
115 jm2.24 35884 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
1161, 38, 115syl2anc 673 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
11736, 47, 51, 114, 116lelttrd 9810 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  <  ( A Xrm  N ) )
11828, 117eqbrtrd 4416 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
119 simpr 468 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  =/=  M )
120 rmyeq 35875 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  =  M  <->  ( A Yrm  K
)  =  ( A Yrm  M ) ) )
121120necon3bid 2687 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  =/=  M  <->  ( A Yrm  K
)  =/=  ( A Yrm  M ) ) )
1221, 4, 17, 121syl3anc 1292 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  =/=  M  <->  ( A Yrm  K )  =/=  ( A Yrm 
M ) ) )
123119, 122mpbid 215 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  ( A Yrm  M ) )
1247ad2antlr 741 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  e.  RR )
125 0red 9662 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  0  e.  RR )
126 simpr 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  -u M )
12722ad2antll 743 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  0  <_  M )
12820adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  RR )
129128le0neg2d 10207 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
0  <_  M  <->  -u M  <_ 
0 ) )
130127, 129mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  -u M  <_  0 )
131130adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  -u M  <_  0
)
132126, 131eqbrtrd 4416 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  <_  0
)
13310ad2antlr 741 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  0  <_  K
)
134 letri3 9737 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  0  e.  RR )  ->  ( K  =  0  <-> 
( K  <_  0  /\  0  <_  K ) ) )
135134biimpar 493 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  RR  /\  0  e.  RR )  /\  ( K  <_ 
0  /\  0  <_  K ) )  ->  K  =  0 )
136124, 125, 132, 133, 135syl22anc 1293 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  0 )
137 simpr 468 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  0 )
138 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  -u M )
139138, 137eqtr3d 2507 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  -u M  =  0 )
140128recnd 9687 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  CC )
141140ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  M  e.  CC )
142141negeq0d 9997 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  ( M  =  0  <->  -u M  =  0 ) )
143139, 142mpbird 240 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  M  =  0 )
144137, 143eqtr4d 2508 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  M )
145136, 144mpdan 681 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  M )
146145ex 441 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =  -u M  ->  K  =  M )
)
147146necon3d 2664 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  K  =/=  -u M ) )
148147imp 436 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  =/=  -u M )
14958, 15syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ZZ )
150149znegcld 11065 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  -u M  e.  ZZ )
151 rmyeq 35875 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  -u M  e.  ZZ )  ->  ( K  =  -u M  <->  ( A Yrm  K
)  =  ( A Yrm  -u M ) ) )
152151necon3bid 2687 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  -u M  e.  ZZ )  ->  ( K  =/=  -u M  <->  ( A Yrm  K
)  =/=  ( A Yrm  -u M ) ) )
1531, 4, 150, 152syl3anc 1292 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  =/=  -u M  <->  ( A Yrm  K )  =/=  ( A Yrm  -u M ) ) )
154148, 153mpbid 215 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  ( A Yrm  -u M ) )
155 rmyneg 35847 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm  -u M )  =  -u ( A Yrm  M ) )
1561, 17, 155syl2anc 673 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  -u M )  = 
-u ( A Yrm  M ) )
157154, 156neeqtrd 2712 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  -u ( A Yrm  M ) )
158118, 123, 1573jca 1210 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )
159158ex 441 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  (
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) ) )
160 simplll 776 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
1613ad2antlr 741 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  K  e.  ZZ )
162160, 161, 30syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  e.  ZZ )
163162zcnd 11064 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  e.  CC )
16416ad2antlr 741 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  M  e.  ZZ )
165160, 164, 33syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
M )  e.  ZZ )
166165zcnd 11064 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
M )  e.  CC )
167163, 166negsubd 10011 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  + 
-u ( A Yrm  M ) )  =  ( ( A Yrm  K )  -  ( A Yrm 
M ) ) )
168167fveq2d 5883 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  =  ( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) ) )
169166negcld 9992 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -u ( A Yrm 
M )  e.  CC )
170163, 169addcld 9680 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  + 
-u ( A Yrm  M ) )  e.  CC )
171170abscld 13575 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  e.  RR )
172163abscld 13575 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  K ) )  e.  RR )
173166abscld 13575 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
174172, 173readdcld 9688 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  e.  RR )
175 nnz 10983 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  ZZ )
176175adantl 473 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  ZZ )
177176ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  N  e.  ZZ )
17849nn0zd 11061 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  ZZ )
179160, 177, 178syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Xrm 
N )  e.  ZZ )
180179zred 11063 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Xrm 
N )  e.  RR )
181163, 169abstrid 13595 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <_  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  -u ( A Yrm 
M ) ) ) )
182 absneg 13417 . . . . . . . . . . . . . . 15  |-  ( ( A Yrm  M )  e.  CC  ->  ( abs `  -u ( A Yrm 
M ) )  =  ( abs `  ( A Yrm 
M ) ) )
183182eqcomd 2477 . . . . . . . . . . . . . 14  |-  ( ( A Yrm  M )  e.  CC  ->  ( abs `  ( A Yrm 
M ) )  =  ( abs `  -u ( A Yrm 
M ) ) )
184166, 183syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  =  ( abs `  -u ( A Yrm  M ) ) )
185184oveq2d 6324 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  =  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  -u ( A Yrm 
M ) ) ) )
186181, 185breqtrrd 4422 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <_  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) ) )
187 simpr1 1036 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
188171, 174, 180, 186, 187lelttrd 9810 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
189168, 188eqbrtrrd 4418 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )  < 
( A Xrm  N ) )
190162, 165zsubcld 11068 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  e.  ZZ )
191190zcnd 11064 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  e.  CC )
192191abscld 13575 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )  e.  RR )
193192, 180ltnled 9799 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) )  <  ( A Xrm  N )  <->  -.  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
194189, 193mpbid 215 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  <_ 
( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) ) )
195 simpr2 1037 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  =/=  ( A Yrm 
M ) )
196163, 166, 195subne0d 10014 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  =/=  0 )
197 dvdsleabs 14428 . . . . . . . . 9  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  e.  ZZ  /\  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  =/=  0 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
198179, 190, 196, 197syl3anc 1292 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
199194, 198mtod 182 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )
200163, 166subnegd 10012 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )
201200fveq2d 5883 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  =  ( abs `  (
( A Yrm  K )  +  ( A Yrm  M ) ) ) )
202163, 166addcld 9680 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  e.  CC )
203202abscld 13575 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  e.  RR )
204163, 166abstrid 13595 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  <_ 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) ) )
205203, 174, 180, 204, 187lelttrd 9810 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  < 
( A Xrm  N ) )
206201, 205eqbrtrd 4416 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
207165znegcld 11065 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -u ( A Yrm 
M )  e.  ZZ )
208162, 207zsubcld 11068 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  e.  ZZ )
209208zcnd 11064 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  e.  CC )
210209abscld 13575 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  e.  RR )
211210, 180ltnled 9799 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) )  <  ( A Xrm  N )  <->  -.  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
212206, 211mpbid 215 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  <_ 
( abs `  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
213 simpr3 1038 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  =/=  -u ( A Yrm 
M ) )
214163, 169, 213subne0d 10014 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  =/=  0 )
215 dvdsleabs 14428 . . . . . . . . 9  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  e.  ZZ  /\  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  =/=  0 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
216179, 208, 214, 215syl3anc 1292 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
217212, 216mtod 182 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )
218199, 217jca 541 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  /\  -.  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
219 pm4.56 503 . . . . . 6  |-  ( ( -.  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  /\  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )  <->  -.  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )
220218, 219sylib 201 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
221220ex 441 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) )  ->  -.  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) ) )
222159, 221syld 44 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  -.  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
223222necon4ad 2662 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) )  ->  K  =  M ) )
2242233impia 1228 1  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )  ->  K  =  M )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   abscabs 13374    || cdvds 14382   Xrm crmx 35819   Yrm crmy 35820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-dvds 14383  df-gcd 14548  df-numer 14763  df-denom 14764  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-squarenn 35757  df-pell1qr 35758  df-pell14qr 35759  df-pell1234qr 35760  df-pellfund 35761  df-rmx 35821  df-rmy 35822
This theorem is referenced by:  jm2.26  35928
  Copyright terms: Public domain W3C validator