Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26 Structured version   Unicode version

Theorem jm2.26 35306
Description: Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  <-> 
( ( 2  x.  N )  ||  ( K  -  M )  \/  ( 2  x.  N
)  ||  ( K  -  -u M ) ) ) )

Proof of Theorem jm2.26
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acongrep 35279 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  ->  E. m  e.  ( 0 ... N ) ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) )
21ad2ant2l 744 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  E. m  e.  ( 0 ... N
) ( ( 2  x.  N )  ||  ( m  -  M
)  \/  ( 2  x.  N )  ||  ( m  -  -u M
) ) )
3 acongrep 35279 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ZZ )  ->  E. k  e.  ( 0 ... N ) ( ( 2  x.  N )  ||  (
k  -  K )  \/  ( 2  x.  N )  ||  (
k  -  -u K
) ) )
43ad2ant2lr 746 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  E. k  e.  ( 0 ... N
) ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )
5 2z 10937 . . . . . . . . . . 11  |-  2  e.  ZZ
6 simpl1l 1048 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )
)
7 nnz 10927 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  ZZ )
87adantl 464 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  ZZ )
96, 8syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  N  e.  ZZ )
10 zmulcl 10953 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
115, 9, 10sylancr 661 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( 2  x.  N
)  e.  ZZ )
12 simplrl 762 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  K  e.  ZZ )
13123ad2antl1 1159 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  K  e.  ZZ )
14 simpl3l 1052 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  m  e.  ( 0 ... N ) )
15 elfzelz 11742 . . . . . . . . . . 11  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1614, 15syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  m  e.  ZZ )
17 simplrr 763 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  M  e.  ZZ )
18173ad2antl1 1159 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  M  e.  ZZ )
19 simpl2r 1051 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( 2  x.  N )  ||  (
k  -  K )  \/  ( 2  x.  N )  ||  (
k  -  -u K
) ) )
20 simpl2l 1050 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
k  e.  ( 0 ... N ) )
21 simplll 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
22213ad2antl1 1159 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
23 frmx 35210 . . . . . . . . . . . . . . . . . 18  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
2423fovcl 6388 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
2524nn0zd 11006 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  ZZ )
2622, 9, 25syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( A Xrm  N )  e.  ZZ )
27 elfzelz 11742 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
2820, 27syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
k  e.  ZZ )
29 frmy 35211 . . . . . . . . . . . . . . . . 17  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
3029fovcl 6388 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  k  e.  ZZ )  ->  ( A Yrm  k )  e.  ZZ )
3122, 28, 30syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( A Yrm  k )  e.  ZZ )
3229fovcl 6388 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
3322, 18, 32syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( A Yrm  M )  e.  ZZ )
3429fovcl 6388 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  m  e.  ZZ )  ->  ( A Yrm 
m )  e.  ZZ )
3522, 16, 34syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( A Yrm  m )  e.  ZZ )
3629fovcl 6388 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( A Yrm 
K )  e.  ZZ )
3722, 13, 36syl2anc 659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( A Yrm  K )  e.  ZZ )
38 jm2.26a 35304 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( (
( 2  x.  N
)  ||  ( k  -  K )  \/  (
2  x.  N ) 
||  ( k  -  -u K ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  ( A Yrm  K ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  k )  -  -u ( A Yrm  K ) ) ) ) )
3922, 9, 28, 13, 38syl22anc 1231 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  k )  -  ( A Yrm  K ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  k )  -  -u ( A Yrm 
K ) ) ) ) )
4019, 39mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  ( A Yrm  K ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  k )  -  -u ( A Yrm  K ) ) ) )
41 simpr 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
42 acongtr 35277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A Xrm  N )  e.  ZZ  /\  ( A Yrm  k )  e.  ZZ )  /\  ( ( A Yrm  K )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  /\  (
( ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  ( A Yrm  K ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  k )  -  -u ( A Yrm  K ) ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  k )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  k )  -  -u ( A Yrm 
M ) ) ) )
4326, 31, 37, 33, 40, 41, 42syl222anc 1246 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  k )  -  -u ( A Yrm  M ) ) ) )
44 simpl3r 1053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) )
45 acongsym 35275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  m  e.  ZZ  /\  M  e.  ZZ )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) )  -> 
( ( 2  x.  N )  ||  ( M  -  m )  \/  ( 2  x.  N
)  ||  ( M  -  -u m ) ) )
4611, 16, 18, 44, 45syl31anc 1233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( 2  x.  N )  ||  ( M  -  m )  \/  ( 2  x.  N
)  ||  ( M  -  -u m ) ) )
47 jm2.26a 35304 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  m  e.  ZZ ) )  ->  ( (
( 2  x.  N
)  ||  ( M  -  m )  \/  (
2  x.  N ) 
||  ( M  -  -u m ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  M )  -  ( A Yrm  m ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  M )  -  -u ( A Yrm  m ) ) ) ) )
4822, 9, 18, 16, 47syl22anc 1231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( ( 2  x.  N )  ||  ( M  -  m
)  \/  ( 2  x.  N )  ||  ( M  -  -u m
) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  M )  -  ( A Yrm  m ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  M )  -  -u ( A Yrm 
m ) ) ) ) )
4946, 48mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  M )  -  ( A Yrm  m ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  M )  -  -u ( A Yrm  m ) ) ) )
50 acongtr 35277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A Xrm  N )  e.  ZZ  /\  ( A Yrm  k )  e.  ZZ )  /\  ( ( A Yrm  M )  e.  ZZ  /\  ( A Yrm  m )  e.  ZZ )  /\  (
( ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  k )  -  -u ( A Yrm  M ) ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  M )  -  ( A Yrm  m ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  M )  -  -u ( A Yrm 
m ) ) ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  k )  -  ( A Yrm  m ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  k )  -  -u ( A Yrm 
m ) ) ) )
5126, 31, 33, 35, 43, 49, 50syl222anc 1246 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  ( A Yrm  m ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  k )  -  -u ( A Yrm  m ) ) ) )
52 jm2.26lem3 35305 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( k  e.  ( 0 ... N )  /\  m  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  k )  -  ( A Yrm  m ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  k )  -  -u ( A Yrm 
m ) ) ) )  ->  k  =  m )
536, 20, 14, 51, 52syl121anc 1235 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
k  =  m )
54 id 22 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  k  =  m )
55 eqidd 2403 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  K  =  K )
5654, 55acongeq12d 35278 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( ( 2  x.  N )  ||  (
k  -  K )  \/  ( 2  x.  N )  ||  (
k  -  -u K
) )  <->  ( (
2  x.  N ) 
||  ( m  -  K )  \/  (
2  x.  N ) 
||  ( m  -  -u K ) ) ) )
5753, 56syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) )  <->  ( (
2  x.  N ) 
||  ( m  -  K )  \/  (
2  x.  N ) 
||  ( m  -  -u K ) ) ) )
5819, 57mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( 2  x.  N )  ||  (
m  -  K )  \/  ( 2  x.  N )  ||  (
m  -  -u K
) ) )
59 acongsym 35275 . . . . . . . . . . 11  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  m  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( 2  x.  N )  ||  (
m  -  K )  \/  ( 2  x.  N )  ||  (
m  -  -u K
) ) )  -> 
( ( 2  x.  N )  ||  ( K  -  m )  \/  ( 2  x.  N
)  ||  ( K  -  -u m ) ) )
6011, 16, 13, 58, 59syl31anc 1233 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( 2  x.  N )  ||  ( K  -  m )  \/  ( 2  x.  N
)  ||  ( K  -  -u m ) ) )
61 acongtr 35277 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  K  e.  ZZ )  /\  ( m  e.  ZZ  /\  M  e.  ZZ )  /\  (
( ( 2  x.  N )  ||  ( K  -  m )  \/  ( 2  x.  N
)  ||  ( K  -  -u m ) )  /\  ( ( 2  x.  N )  ||  ( m  -  M
)  \/  ( 2  x.  N )  ||  ( m  -  -u M
) ) ) )  ->  ( ( 2  x.  N )  ||  ( K  -  M
)  \/  ( 2  x.  N )  ||  ( K  -  -u M
) ) )
6211, 13, 16, 18, 60, 44, 61syl222anc 1246 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  /\  ( k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  ( k  -  K
)  \/  ( 2  x.  N )  ||  ( k  -  -u K
) ) )  /\  ( m  e.  (
0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) ) )  /\  ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )  -> 
( ( 2  x.  N )  ||  ( K  -  M )  \/  ( 2  x.  N
)  ||  ( K  -  -u M ) ) )
63623exp1 1213 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
k  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  (
k  -  K )  \/  ( 2  x.  N )  ||  (
k  -  -u K
) ) )  -> 
( ( m  e.  ( 0 ... N
)  /\  ( (
2  x.  N ) 
||  ( m  -  M )  \/  (
2  x.  N ) 
||  ( m  -  -u M ) ) )  ->  ( ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  ->  ( ( 2  x.  N )  ||  ( K  -  M
)  \/  ( 2  x.  N )  ||  ( K  -  -u M
) ) ) ) ) )
6463expd 434 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( k  e.  ( 0 ... N
)  ->  ( (
( 2  x.  N
)  ||  ( k  -  K )  \/  (
2  x.  N ) 
||  ( k  -  -u K ) )  -> 
( ( m  e.  ( 0 ... N
)  /\  ( (
2  x.  N ) 
||  ( m  -  M )  \/  (
2  x.  N ) 
||  ( m  -  -u M ) ) )  ->  ( ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  ->  ( ( 2  x.  N )  ||  ( K  -  M
)  \/  ( 2  x.  N )  ||  ( K  -  -u M
) ) ) ) ) ) )
6564rexlimdv 2894 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( E. k  e.  ( 0 ... N ) ( ( 2  x.  N
)  ||  ( k  -  K )  \/  (
2  x.  N ) 
||  ( k  -  -u K ) )  -> 
( ( m  e.  ( 0 ... N
)  /\  ( (
2  x.  N ) 
||  ( m  -  M )  \/  (
2  x.  N ) 
||  ( m  -  -u M ) ) )  ->  ( ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  ->  ( ( 2  x.  N )  ||  ( K  -  M
)  \/  ( 2  x.  N )  ||  ( K  -  -u M
) ) ) ) ) )
664, 65mpd 15 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
m  e.  ( 0 ... N )  /\  ( ( 2  x.  N )  ||  (
m  -  M )  \/  ( 2  x.  N )  ||  (
m  -  -u M
) ) )  -> 
( ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )  ->  (
( 2  x.  N
)  ||  ( K  -  M )  \/  (
2  x.  N ) 
||  ( K  -  -u M ) ) ) ) )
6766expd 434 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( m  e.  ( 0 ... N
)  ->  ( (
( 2  x.  N
)  ||  ( m  -  M )  \/  (
2  x.  N ) 
||  ( m  -  -u M ) )  -> 
( ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )  ->  (
( 2  x.  N
)  ||  ( K  -  M )  \/  (
2  x.  N ) 
||  ( K  -  -u M ) ) ) ) ) )
6867rexlimdv 2894 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( E. m  e.  ( 0 ... N ) ( ( 2  x.  N
)  ||  ( m  -  M )  \/  (
2  x.  N ) 
||  ( m  -  -u M ) )  -> 
( ( ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )  ->  (
( 2  x.  N
)  ||  ( K  -  M )  \/  (
2  x.  N ) 
||  ( K  -  -u M ) ) ) ) )
692, 68mpd 15 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  ->  ( ( 2  x.  N )  ||  ( K  -  M
)  \/  ( 2  x.  N )  ||  ( K  -  -u M
) ) ) )
70 jm2.26a 35304 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( 2  x.  N
)  ||  ( K  -  M )  \/  (
2  x.  N ) 
||  ( K  -  -u M ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
717, 70sylanl2 649 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( 2  x.  N
)  ||  ( K  -  M )  \/  (
2  x.  N ) 
||  ( K  -  -u M ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
7269, 71impbid 190 1  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  <-> 
( ( 2  x.  N )  ||  ( K  -  M )  \/  ( 2  x.  N
)  ||  ( K  -  -u M ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    e. wcel 1842   E.wrex 2755   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   0cc0 9522    x. cmul 9527    - cmin 9841   -ucneg 9842   NNcn 10576   2c2 10626   NN0cn0 10836   ZZcz 10905   ZZ>=cuz 11127   ...cfz 11726    || cdvds 14195   Xrm crmx 35197   Yrm crmy 35198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-omul 7172  df-er 7348  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-acn 8355  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-fac 12398  df-bc 12425  df-hash 12453  df-shft 13049  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-limsup 13443  df-clim 13460  df-rlim 13461  df-sum 13658  df-ef 14012  df-sin 14014  df-cos 14015  df-pi 14017  df-dvds 14196  df-gcd 14354  df-numer 14477  df-denom 14478  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lp 19930  df-perf 19931  df-cn 20021  df-cnp 20022  df-haus 20109  df-tx 20355  df-hmeo 20548  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-limc 22562  df-dv 22563  df-log 23236  df-squarenn 35138  df-pell1qr 35139  df-pell14qr 35140  df-pell1234qr 35141  df-pellfund 35142  df-rmx 35199  df-rmy 35200
This theorem is referenced by:  jm2.27a  35309
  Copyright terms: Public domain W3C validator