Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.25 Structured version   Unicode version

Theorem jm2.25 29190
Description: Lemma for jm2.26 29193. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.25  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  I  e.  ZZ )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )

Proof of Theorem jm2.25
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 748 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
2 simprrr 757 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  N  e.  ZZ )
3 frmx 29096 . . . . . . . . . . 11  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
43fovcl 6184 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
54nn0zd 10732 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  ZZ )
61, 2, 5syl2anc 654 . . . . . . . 8  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  e.  ZZ )
7 simprrl 756 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  ZZ )
8 frmy 29097 . . . . . . . . . 10  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
98fovcl 6184 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
101, 7, 9syl2anc 654 . . . . . . . 8  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm 
M )  e.  ZZ )
11 congid 29156 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  ( A Xrm  N ) 
||  ( ( A Yrm  M )  -  ( A Yrm  M ) ) )
126, 10, 11syl2anc 654 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( A Yrm  M )  -  ( A Yrm  M ) ) )
13 2cnd 10381 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  2  e.  CC )
14 zcn 10638 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  CC )
1513, 14mulcld 9393 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
1615mul02d 9554 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  (
0  x.  ( 2  x.  N ) )  =  0 )
1716adantl 463 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  (
2  x.  N ) )  =  0 )
1817oveq2d 6096 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  ( 0  x.  ( 2  x.  N ) ) )  =  ( M  +  0 ) )
19 zcn 10638 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  CC )
2019addid1d 9556 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( M  +  0 )  =  M )
2120adantr 462 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  =  M )
2218, 21eqtrd 2465 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  ( 0  x.  ( 2  x.  N ) ) )  =  M )
2322ad2antll 721 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( M  +  ( 0  x.  ( 2  x.  N ) ) )  =  M )
2423oveq2d 6096 . . . . . . . 8  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  =  ( A Yrm  M ) )
2524oveq1d 6095 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( 0  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  =  ( ( A Yrm  M )  -  ( A Yrm  M ) ) )
2612, 25breqtrrd 4306 . . . . . 6  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( 0  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) ) )
2726orcd 392 . . . . 5  |-  ( ( I  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
2827ex 434 . . . 4  |-  ( I  e.  ZZ  ->  (
( A  e.  (
ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( 0  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) ) )
29 simprl 748 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
30 simprrr 757 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  N  e.  ZZ )
3129, 30, 5syl2anc 654 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  e.  ZZ )
32 simprrl 756 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  ZZ )
3329, 32, 9syl2anc 654 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm 
M )  e.  ZZ )
34 simpl 454 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  b  e.  ZZ )
3534peano2zd 10737 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
b  +  1 )  e.  ZZ )
36 eluzel2 10853 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  2  e.  ZZ )
3736ad2antrl 720 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  2  e.  ZZ )
3837, 30zmulcld 10740 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  N )  e.  ZZ )
3935, 38zmulcld 10740 . . . . . . . . 9  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( b  +  1 )  x.  ( 2  x.  N ) )  e.  ZZ )
4032, 39zaddcld 10738 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( M  +  ( (
b  +  1 )  x.  ( 2  x.  N ) ) )  e.  ZZ )
418fovcl 6184 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  +  ( (
b  +  1 )  x.  ( 2  x.  N ) ) )  e.  ZZ )  -> 
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  e.  ZZ )
4229, 40, 41syl2anc 654 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  e.  ZZ )
4334, 38zmulcld 10740 . . . . . . . . 9  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
b  x.  ( 2  x.  N ) )  e.  ZZ )
4432, 43zaddcld 10738 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( M  +  ( b  x.  ( 2  x.  N
) ) )  e.  ZZ )
458fovcl 6184 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  +  ( b  x.  ( 2  x.  N
) ) )  e.  ZZ )  ->  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ )
4629, 44, 45syl2anc 654 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ )
473fovcl 6184 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
2  x.  N )  e.  ZZ )  -> 
( A Xrm  ( 2  x.  N ) )  e. 
NN0 )
4847nn0zd 10732 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
2  x.  N )  e.  ZZ )  -> 
( A Xrm  ( 2  x.  N ) )  e.  ZZ )
4929, 38, 48syl2anc 654 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm  ( 2  x.  N
) )  e.  ZZ )
5046, 49zmulcld 10740 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  e.  ZZ )
5146znegcld 10736 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ )
5250, 51zsubcld 10739 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  e.  ZZ )
533fovcl 6184 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  +  ( b  x.  ( 2  x.  N
) ) )  e.  ZZ )  ->  ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  NN0 )
5453nn0zd 10732 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  +  ( b  x.  ( 2  x.  N
) ) )  e.  ZZ )  ->  ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ )
5529, 44, 54syl2anc 654 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ )
568fovcl 6184 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
2  x.  N )  e.  ZZ )  -> 
( A Yrm  ( 2  x.  N ) )  e.  ZZ )
5729, 38, 56syl2anc 654 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( 2  x.  N
) )  e.  ZZ )
5855, 57zmulcld 10740 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) )  e.  ZZ )
5937, 31zmulcld 10740 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  ( A Xrm  N ) )  e.  ZZ )
60 dvdsmul2 13537 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  ( A Xrm 
N ) )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ )  ->  ( A Xrm  N ) 
||  ( ( 2  x.  ( A Xrm  N ) )  x.  ( A Xrm  N ) ) )
6159, 31, 60syl2anc 654 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( 2  x.  ( A Xrm 
N ) )  x.  ( A Xrm  N ) ) )
62 rmxdbl 29122 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm  ( 2  x.  N
) )  =  ( ( 2  x.  (
( A Xrm  N ) ^
2 ) )  - 
1 ) )
6329, 30, 62syl2anc 654 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm  ( 2  x.  N
) )  =  ( ( 2  x.  (
( A Xrm  N ) ^
2 ) )  - 
1 ) )
6463oveq1d 6095 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  ( 2  x.  N ) )  +  1 )  =  ( ( ( 2  x.  ( ( A Xrm  N ) ^ 2 ) )  -  1 )  +  1 ) )
65 2cnd 10381 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  2  e.  CC )
6629, 30, 4syl2anc 654 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  e.  NN0 )
6766nn0cnd 10625 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  e.  CC )
6867sqcld 11989 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  N ) ^
2 )  e.  CC )
6965, 68mulcld 9393 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  ( ( A Xrm  N ) ^ 2 ) )  e.  CC )
70 ax-1cn 9327 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
7170a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  1  e.  CC )
7269, 71npcand 9710 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( ( 2  x.  ( ( A Xrm  N ) ^ 2 ) )  -  1 )  +  1 )  =  ( 2  x.  ( ( A Xrm  N ) ^ 2 ) ) )
7367sqvald 11988 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  N ) ^
2 )  =  ( ( A Xrm  N )  x.  ( A Xrm  N ) ) )
7473oveq2d 6096 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  ( ( A Xrm  N ) ^ 2 ) )  =  ( 2  x.  ( ( A Xrm  N )  x.  ( A Xrm 
N ) ) ) )
75 mulass 9357 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  ( A Xrm  N )  e.  CC  /\  ( A Xrm  N )  e.  CC )  ->  ( ( 2  x.  ( A Xrm  N ) )  x.  ( A Xrm  N ) )  =  ( 2  x.  ( ( A Xrm  N )  x.  ( A Xrm 
N ) ) ) )
7675eqcomd 2438 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  ( A Xrm  N )  e.  CC  /\  ( A Xrm  N )  e.  CC )  ->  ( 2  x.  ( ( A Xrm  N )  x.  ( A Xrm  N ) ) )  =  ( ( 2  x.  ( A Xrm 
N ) )  x.  ( A Xrm  N ) ) )
7765, 67, 67, 76syl3anc 1211 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  ( ( A Xrm  N )  x.  ( A Xrm 
N ) ) )  =  ( ( 2  x.  ( A Xrm  N ) )  x.  ( A Xrm  N ) ) )
7874, 77eqtrd 2465 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  ( ( A Xrm  N ) ^ 2 ) )  =  ( ( 2  x.  ( A Xrm 
N ) )  x.  ( A Xrm  N ) ) )
7964, 72, 783eqtrd 2469 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  ( 2  x.  N ) )  +  1 )  =  ( ( 2  x.  ( A Xrm 
N ) )  x.  ( A Xrm  N ) ) )
8061, 79breqtrrd 4306 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( A Xrm  ( 2  x.  N ) )  +  1 ) )
8149peano2zd 10737 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  ( 2  x.  N ) )  +  1 )  e.  ZZ )
82 dvdsmultr2 13550 . . . . . . . . . . . . 13  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ  /\  ( ( A Xrm  ( 2  x.  N ) )  +  1 )  e.  ZZ )  ->  (
( A Xrm  N )  ||  ( ( A Xrm  ( 2  x.  N ) )  +  1 )  -> 
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( ( A Xrm  ( 2  x.  N ) )  +  1 ) ) ) )
8331, 46, 81, 82syl3anc 1211 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Xrm  ( 2  x.  N ) )  +  1 )  -> 
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( ( A Xrm  ( 2  x.  N ) )  +  1 ) ) ) )
8480, 83mpd 15 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( ( A Xrm  ( 2  x.  N ) )  +  1 ) ) )
8546zcnd 10735 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  CC )
8685mulid1d 9390 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  1 )  =  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )
8786oveq2d 6096 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  1 ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) ) )
8849zcnd 10735 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm  ( 2  x.  N
) )  e.  CC )
8985, 88, 71adddid 9397 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( ( A Xrm  ( 2  x.  N ) )  +  1 ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N
) ) )  +  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  1 ) ) )
9050zcnd 10735 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  e.  CC )
9190, 85subnegd 9713 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) ) )
9287, 89, 913eqtr4d 2475 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( ( A Xrm  ( 2  x.  N ) )  +  1 ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N
) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) ) )
9384, 92breqtrd 4304 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) ) )
948fovcl 6184 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
9529, 30, 94syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm 
N )  e.  ZZ )
9637, 95zmulcld 10740 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  ( A Yrm  N ) )  e.  ZZ )
97 dvdsmul2 13537 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  ( A Yrm 
N ) )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ )  ->  ( A Xrm  N ) 
||  ( ( 2  x.  ( A Yrm  N ) )  x.  ( A Xrm  N ) ) )
9896, 31, 97syl2anc 654 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( 2  x.  ( A Yrm 
N ) )  x.  ( A Xrm  N ) ) )
99 rmydbl 29123 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm  ( 2  x.  N
) )  =  ( ( 2  x.  ( A Xrm 
N ) )  x.  ( A Yrm  N ) ) )
10029, 30, 99syl2anc 654 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( 2  x.  N
) )  =  ( ( 2  x.  ( A Xrm 
N ) )  x.  ( A Yrm  N ) ) )
10195zcnd 10735 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm 
N )  e.  CC )
10265, 67, 101mul32d 9566 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( 2  x.  ( A Xrm 
N ) )  x.  ( A Yrm  N ) )  =  ( ( 2  x.  ( A Yrm  N ) )  x.  ( A Xrm  N ) ) )
103100, 102eqtrd 2465 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( 2  x.  N
) )  =  ( ( 2  x.  ( A Yrm 
N ) )  x.  ( A Xrm  N ) ) )
10498, 103breqtrrd 4306 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  ( A Yrm  ( 2  x.  N
) ) )
105 dvdsmultr2 13550 . . . . . . . . . . . 12  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  ZZ  /\  ( A Yrm  ( 2  x.  N ) )  e.  ZZ )  ->  (
( A Xrm  N )  ||  ( A Yrm  ( 2  x.  N ) )  -> 
( A Xrm  N )  ||  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) )
10631, 55, 57, 105syl3anc 1211 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  N )  ||  ( A Yrm  ( 2  x.  N ) )  -> 
( A Xrm  N )  ||  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) )
107104, 106mpd 15 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( A Xrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) )
108 dvds2add 13546 . . . . . . . . . . 11  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) ) )  e.  ZZ  /\  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) )  e.  ZZ )  ->  ( ( ( A Xrm  N )  ||  (
( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  /\  ( A Xrm  N )  ||  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) )  ->  ( A Xrm 
N )  ||  (
( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) ) )
109108imp 429 . . . . . . . . . 10  |-  ( ( ( ( A Xrm  N )  e.  ZZ  /\  (
( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  e.  ZZ  /\  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N
) ) )  e.  ZZ )  /\  (
( A Xrm  N )  ||  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  /\  ( A Xrm  N )  ||  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) )  -> 
( A Xrm  N )  ||  ( ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N
) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) )
11031, 52, 58, 93, 107, 109syl32anc 1219 . . . . . . . . 9  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) )
11134zcnd 10735 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  b  e.  CC )
11238zcnd 10735 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
2  x.  N )  e.  CC )
113111, 71, 112adddird 9398 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( b  +  1 )  x.  ( 2  x.  N ) )  =  ( ( b  x.  ( 2  x.  N ) )  +  ( 1  x.  (
2  x.  N ) ) ) )
114113oveq2d 6096 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( M  +  ( (
b  +  1 )  x.  ( 2  x.  N ) ) )  =  ( M  +  ( ( b  x.  ( 2  x.  N
) )  +  ( 1  x.  ( 2  x.  N ) ) ) ) )
11532zcnd 10735 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  CC )
11643zcnd 10735 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
b  x.  ( 2  x.  N ) )  e.  CC )
117 1z 10663 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ZZ
118117a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  1  e.  ZZ )
119118, 38zmulcld 10740 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
1  x.  ( 2  x.  N ) )  e.  ZZ )
120119zcnd 10735 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
1  x.  ( 2  x.  N ) )  e.  CC )
121115, 116, 120addassd 9395 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( M  +  ( b  x.  ( 2  x.  N ) ) )  +  ( 1  x.  ( 2  x.  N ) ) )  =  ( M  +  ( ( b  x.  ( 2  x.  N
) )  +  ( 1  x.  ( 2  x.  N ) ) ) ) )
122112mulid2d 9391 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
1  x.  ( 2  x.  N ) )  =  ( 2  x.  N ) )
123122oveq2d 6096 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( M  +  ( b  x.  ( 2  x.  N ) ) )  +  ( 1  x.  ( 2  x.  N ) ) )  =  ( ( M  +  ( b  x.  ( 2  x.  N
) ) )  +  ( 2  x.  N
) ) )
124114, 121, 1233eqtr2d 2471 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( M  +  ( (
b  +  1 )  x.  ( 2  x.  N ) ) )  =  ( ( M  +  ( b  x.  ( 2  x.  N
) ) )  +  ( 2  x.  N
) ) )
125124oveq2d 6096 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  =  ( A Yrm  ( ( M  +  ( b  x.  (
2  x.  N ) ) )  +  ( 2  x.  N ) ) ) )
126 rmyadd 29114 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  +  ( b  x.  ( 2  x.  N
) ) )  e.  ZZ  /\  ( 2  x.  N )  e.  ZZ )  ->  ( A Yrm  ( ( M  +  ( b  x.  (
2  x.  N ) ) )  +  ( 2  x.  N ) ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N
) ) ) ) )
12729, 44, 38, 126syl3anc 1211 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( ( M  +  ( b  x.  (
2  x.  N ) ) )  +  ( 2  x.  N ) ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N
) ) ) ) )
128125, 127eqtrd 2465 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  =  ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N
) ) ) ) )
129128oveq1d 6095 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) )  =  ( ( ( ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) ) )
13058zcnd 10735 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) )  e.  CC )
13151zcnd 10735 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  e.  CC )
13290, 130, 131addsubd 9727 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )  =  ( ( ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N
) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N ) ) ) ) )
133129, 132eqtrd 2465 . . . . . . . . 9  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) )  =  ( ( ( ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  x.  ( A Xrm  ( 2  x.  N ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) ) )  +  ( ( A Xrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  x.  ( A Yrm  ( 2  x.  N
) ) ) ) )
134110, 133breqtrrd 4306 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) ) ) )
135134olcd 393 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) ) ) )
136 jm2.25lem1 29189 . . . . . . 7  |-  ( ( ( ( A Xrm  N )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ )  /\  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  e.  ZZ  /\  ( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  e.  ZZ )  /\  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) ) ) )  ->  ( (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) )  <-> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) )
13731, 33, 42, 46, 135, 136syl221anc 1222 . . . . . 6  |-  ( ( b  e.  ZZ  /\  ( A  e.  ( ZZ>=
`  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) )  <->  ( ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) ) ) ) )
138137pm5.74da 680 . . . . 5  |-  ( b  e.  ZZ  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) ) )
139 oveq1 6087 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a  x.  ( 2  x.  N ) )  =  ( b  x.  ( 2  x.  N
) ) )
140139oveq2d 6096 . . . . . . . . . 10  |-  ( a  =  b  ->  ( M  +  ( a  x.  ( 2  x.  N
) ) )  =  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )
141140oveq2d 6096 . . . . . . . . 9  |-  ( a  =  b  ->  ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  =  ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) ) )
142141oveq1d 6095 . . . . . . . 8  |-  ( a  =  b  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) )
143142breq2d 4292 . . . . . . 7  |-  ( a  =  b  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) ) )
144141oveq1d 6095 . . . . . . . 8  |-  ( a  =  b  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) )
145144breq2d 4292 . . . . . . 7  |-  ( a  =  b  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
146143, 145orbi12d 702 . . . . . 6  |-  ( a  =  b  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) )  <->  ( ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) ) ) ) )
147146imbi2d 316 . . . . 5  |-  ( a  =  b  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( b  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( b  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) ) )
148 oveq1 6087 . . . . . . . . . . 11  |-  ( a  =  ( b  +  1 )  ->  (
a  x.  ( 2  x.  N ) )  =  ( ( b  +  1 )  x.  ( 2  x.  N
) ) )
149148oveq2d 6096 . . . . . . . . . 10  |-  ( a  =  ( b  +  1 )  ->  ( M  +  ( a  x.  ( 2  x.  N
) ) )  =  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )
150149oveq2d 6096 . . . . . . . . 9  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  =  ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) ) )
151150oveq1d 6095 . . . . . . . 8  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) )
152151breq2d 4292 . . . . . . 7  |-  ( a  =  ( b  +  1 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) ) )
153150oveq1d 6095 . . . . . . . 8  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) )
154153breq2d 4292 . . . . . . 7  |-  ( a  =  ( b  +  1 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
155152, 154orbi12d 702 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) )  <->  ( ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) ) ) ) )
156155imbi2d 316 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( ( b  +  1 )  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( ( b  +  1 )  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) ) )
157 oveq1 6087 . . . . . . . . . . 11  |-  ( a  =  0  ->  (
a  x.  ( 2  x.  N ) )  =  ( 0  x.  ( 2  x.  N
) ) )
158157oveq2d 6096 . . . . . . . . . 10  |-  ( a  =  0  ->  ( M  +  ( a  x.  ( 2  x.  N
) ) )  =  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )
159158oveq2d 6096 . . . . . . . . 9  |-  ( a  =  0  ->  ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  =  ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) ) )
160159oveq1d 6095 . . . . . . . 8  |-  ( a  =  0  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) )
161160breq2d 4292 . . . . . . 7  |-  ( a  =  0  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) ) )
162159oveq1d 6095 . . . . . . . 8  |-  ( a  =  0  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) )
163162breq2d 4292 . . . . . . 7  |-  ( a  =  0  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
164161, 163orbi12d 702 . . . . . 6  |-  ( a  =  0  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) )  <->  ( ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) ) ) ) )
165164imbi2d 316 . . . . 5  |-  ( a  =  0  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( 0  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) ) )
166 oveq1 6087 . . . . . . . . . . 11  |-  ( a  =  I  ->  (
a  x.  ( 2  x.  N ) )  =  ( I  x.  ( 2  x.  N
) ) )
167166oveq2d 6096 . . . . . . . . . 10  |-  ( a  =  I  ->  ( M  +  ( a  x.  ( 2  x.  N
) ) )  =  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )
168167oveq2d 6096 . . . . . . . . 9  |-  ( a  =  I  ->  ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  =  ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) ) )
169168oveq1d 6095 . . . . . . . 8  |-  ( a  =  I  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) )
170169breq2d 4292 . . . . . . 7  |-  ( a  =  I  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) ) ) )
171168oveq1d 6095 . . . . . . . 8  |-  ( a  =  I  ->  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) )
172171breq2d 4292 . . . . . . 7  |-  ( a  =  I  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) )  <->  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
173170, 172orbi12d 702 . . . . . 6  |-  ( a  =  I  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) )  <->  ( ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm 
M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N
) ) ) )  -  -u ( A Yrm  M ) ) ) ) )
174173imbi2d 316 . . . . 5  |-  ( a  =  I  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( a  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( a  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( I  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) ) )
175138, 147, 156, 165, 174zindbi 29129 . . . 4  |-  ( I  e.  ZZ  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( 0  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( 0  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( I  x.  (
2  x.  N ) ) ) )  -  -u ( A Yrm  M ) ) ) ) ) )
17628, 175mpbid 210 . . 3  |-  ( I  e.  ZZ  ->  (
( A  e.  (
ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A Xrm 
N )  ||  (
( A Yrm  ( M  +  ( I  x.  (
2  x.  N ) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) ) )
177176impcom 430 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  I  e.  ZZ )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
1781773impa 1175 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  I  e.  ZZ )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N
) ) ) )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  ( M  +  ( I  x.  ( 2  x.  N ) ) ) )  -  -u ( A Yrm 
M ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   CCcc 9267   0cc0 9269   1c1 9270    + caddc 9272    x. cmul 9274    - cmin 9582   -ucneg 9583   2c2 10358   NN0cn0 10566   ZZcz 10633   ZZ>=cuz 10848   ^cexp 11848    || cdivides 13517   Xrm crmx 29083   Yrm crmy 29084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-ioo 11291  df-ioc 11292  df-ico 11293  df-icc 11294  df-fz 11424  df-fzo 11532  df-fl 11625  df-mod 11692  df-seq 11790  df-exp 11849  df-fac 12035  df-bc 12062  df-hash 12087  df-shft 12539  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-limsup 12932  df-clim 12949  df-rlim 12950  df-sum 13147  df-ef 13335  df-sin 13337  df-cos 13338  df-pi 13340  df-dvds 13518  df-gcd 13673  df-numer 13795  df-denom 13796  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-mulr 14234  df-starv 14235  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-hom 14244  df-cco 14245  df-rest 14343  df-topn 14344  df-0g 14362  df-gsum 14363  df-topgen 14364  df-pt 14365  df-prds 14368  df-xrs 14422  df-qtop 14427  df-imas 14428  df-xps 14430  df-mre 14506  df-mrc 14507  df-acs 14509  df-mnd 15397  df-submnd 15447  df-mulg 15527  df-cntz 15814  df-cmn 16258  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-fbas 17657  df-fg 17658  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cld 18464  df-ntr 18465  df-cls 18466  df-nei 18543  df-lp 18581  df-perf 18582  df-cn 18672  df-cnp 18673  df-haus 18760  df-tx 18976  df-hmeo 19169  df-fil 19260  df-fm 19352  df-flim 19353  df-flf 19354  df-xms 19736  df-ms 19737  df-tms 19738  df-cncf 20295  df-limc 21182  df-dv 21183  df-log 21892  df-squarenn 29024  df-pell1qr 29025  df-pell14qr 29026  df-pell1234qr 29027  df-pellfund 29028  df-rmx 29085  df-rmy 29086
This theorem is referenced by:  jm2.26a  29191
  Copyright terms: Public domain W3C validator