Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24nn Structured version   Unicode version

Theorem jm2.24nn 29314
Description: X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to  NN. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24nn  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )

Proof of Theorem jm2.24nn
StepHypRef Expression
1 nnz 10680 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 1z 10688 . . . . . 6  |-  1  e.  ZZ
3 zsubcl 10699 . . . . . 6  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  ->  ( N  -  1 )  e.  ZZ )
41, 2, 3sylancl 662 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
5 frmy 29267 . . . . . 6  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
65fovcl 6207 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
74, 6sylan2 474 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( N  -  1 ) )  e.  ZZ )
87zred 10759 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( N  -  1 ) )  e.  RR )
95fovcl 6207 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
101, 9sylan2 474 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
1110zred 10759 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  RR )
128, 11readdcld 9425 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  e.  RR )
13 2re 10403 . . . 4  |-  2  e.  RR
14 remulcl 9379 . . . 4  |-  ( ( 2  e.  RR  /\  ( A Yrm  N )  e.  RR )  ->  (
2  x.  ( A Yrm  N ) )  e.  RR )
1513, 11, 14sylancr 663 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  N ) )  e.  RR )
1615, 8resubcld 9788 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( 2  x.  ( A Yrm 
N ) )  -  ( A Yrm  ( N  - 
1 ) ) )  e.  RR )
17 frmx 29266 . . . . 5  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1817fovcl 6207 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
191, 18sylan2 474 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
2019nn0red 10649 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  RR )
2111, 8resubcld 9788 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  N )  -  ( A Yrm  ( N  - 
1 ) ) )  e.  RR )
22 remulcl 9379 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( A Yrm  ( N  - 
1 ) )  e.  RR )  ->  (
2  x.  ( A Yrm  ( N  -  1 ) ) )  e.  RR )
2313, 8, 22sylancr 663 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  ( N  -  1 ) ) )  e.  RR )
24 eluzelre 10883 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
2524adantr 465 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  A  e.  RR )
2625, 8remulcld 9426 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A  x.  ( A Yrm  ( N  -  1 ) ) )  e.  RR )
278, 25remulcld 9426 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  x.  A )  e.  RR )
2817fovcl 6207 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Xrm  ( N  - 
1 ) )  e. 
NN0 )
294, 28sylan2 474 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Xrm  ( N  -  1 ) )  e.  NN0 )
3029nn0red 10649 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Xrm  ( N  -  1 ) )  e.  RR )
3127, 30readdcld 9425 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  - 
1 ) ) )  e.  RR )
3213a1i 11 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  2  e.  RR )
33 nnm1nn0 10633 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
34 rmxypos 29302 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  NN0 )  -> 
( 0  <  ( A Xrm  ( N  -  1 ) )  /\  0  <_  ( A Yrm  ( N  - 
1 ) ) ) )
3534simprd 463 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  NN0 )  -> 
0  <_  ( A Yrm  ( N  -  1 ) ) )
3633, 35sylan2 474 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  0  <_  ( A Yrm  ( N  - 
1 ) ) )
37 eluzle 10885 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  2  <_  A )
3837adantr 465 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  2  <_  A )
3932, 25, 8, 36, 38lemul1ad 10284 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  ( N  -  1 ) ) )  <_  ( A  x.  ( A Yrm  ( N  -  1 ) ) ) )
4025recnd 9424 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  A  e.  CC )
418recnd 9424 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( N  -  1 ) )  e.  CC )
4240, 41mulcomd 9419 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A  x.  ( A Yrm  ( N  -  1 ) ) )  =  ( ( A Yrm  ( N  - 
1 ) )  x.  A ) )
4334simpld 459 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  NN0 )  -> 
0  <  ( A Xrm  ( N  -  1 ) ) )
4433, 43sylan2 474 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  0  <  ( A Xrm  ( N  - 
1 ) ) )
4530, 27ltaddposd 9935 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
0  <  ( A Xrm  ( N  -  1 ) )  <->  ( ( A Yrm  ( N  -  1 ) )  x.  A )  <  ( ( ( A Yrm  ( N  -  1 ) )  x.  A
)  +  ( A Xrm  ( N  -  1 ) ) ) ) )
4644, 45mpbid 210 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  x.  A )  <  (
( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  - 
1 ) ) ) )
4742, 46eqbrtrd 4324 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A  x.  ( A Yrm  ( N  -  1 ) ) )  <  (
( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  - 
1 ) ) ) )
4823, 26, 31, 39, 47lelttrd 9541 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  ( N  -  1 ) ) )  <  (
( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  - 
1 ) ) ) )
49412timesd 10579 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  ( N  -  1 ) ) )  =  ( ( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  ( N  - 
1 ) ) ) )
50 rmyp1 29286 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  ( ( N  -  1 )  +  1 ) )  =  ( ( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  -  1 ) ) ) )
514, 50sylan2 474 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( ( N  - 
1 )  +  1 ) )  =  ( ( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  - 
1 ) ) ) )
52 nnre 10341 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
5352adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  RR )
5453recnd 9424 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  CC )
55 ax-1cn 9352 . . . . . . . . 9  |-  1  e.  CC
56 npcan 9631 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5754, 55, 56sylancl 662 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( N  -  1 )  +  1 )  =  N )
5857oveq2d 6119 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( ( N  - 
1 )  +  1 ) )  =  ( A Yrm  N ) )
5951, 58eqtr3d 2477 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( ( A Yrm  ( N  -  1 ) )  x.  A )  +  ( A Xrm  ( N  - 
1 ) ) )  =  ( A Yrm  N ) )
6048, 49, 593brtr3d 4333 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  ( N  - 
1 ) ) )  <  ( A Yrm  N ) )
618, 8, 11ltaddsubd 9951 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  ( N  -  1 ) ) )  <  ( A Yrm  N )  <->  ( A Yrm  ( N  -  1 ) )  <  ( ( A Yrm  N )  -  ( A Yrm  ( N  -  1 ) ) ) ) )
6260, 61mpbid 210 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( N  -  1 ) )  <  (
( A Yrm  N )  -  ( A Yrm  ( N  - 
1 ) ) ) )
638, 21, 11, 62ltadd1dd 9962 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( ( ( A Yrm  N )  -  ( A Yrm  ( N  -  1 ) ) )  +  ( A Yrm  N ) ) )
6411recnd 9424 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
65642timesd 10579 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  N ) )  =  ( ( A Yrm  N )  +  ( A Yrm  N ) ) )
6665oveq1d 6118 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( 2  x.  ( A Yrm 
N ) )  -  ( A Yrm  ( N  - 
1 ) ) )  =  ( ( ( A Yrm  N )  +  ( A Yrm  N ) )  -  ( A Yrm  ( N  - 
1 ) ) ) )
6764, 64, 41addsubd 9752 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( ( A Yrm  N )  +  ( A Yrm  N ) )  -  ( A Yrm  ( N  -  1 ) ) )  =  ( ( ( A Yrm  N )  -  ( A Yrm  ( N  -  1 ) ) )  +  ( A Yrm  N ) ) )
6866, 67eqtrd 2475 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( 2  x.  ( A Yrm 
N ) )  -  ( A Yrm  ( N  - 
1 ) ) )  =  ( ( ( A Yrm  N )  -  ( A Yrm  ( N  -  1 ) ) )  +  ( A Yrm  N ) ) )
6963, 68breqtrrd 4330 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( ( 2  x.  ( A Yrm  N ) )  -  ( A Yrm  ( N  -  1 ) ) ) )
7025, 11remulcld 9426 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A  x.  ( A Yrm  N
) )  e.  RR )
71 rmy0 29282 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
7271adantr 465 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  0 )  =  0 )
73 nngt0 10363 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
7473adantl 466 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  0  <  N )
75 simpl 457 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  A  e.  ( ZZ>= `  2 )
)
76 0zd 10670 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  0  e.  ZZ )
771adantl 466 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  ZZ )
78 ltrmy 29307 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
7975, 76, 77, 78syl3anc 1218 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
8074, 79mpbid 210 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  0 )  <  ( A Yrm 
N ) )
8172, 80eqbrtrrd 4326 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  0  <  ( A Yrm  N ) )
82 lemul1 10193 . . . . . 6  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  (
( A Yrm  N )  e.  RR  /\  0  < 
( A Yrm  N ) ) )  ->  ( 2  <_  A  <->  ( 2  x.  ( A Yrm  N ) )  <_  ( A  x.  ( A Yrm  N ) ) ) )
8332, 25, 11, 81, 82syl112anc 1222 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  <_  A  <->  ( 2  x.  ( A Yrm  N ) )  <_  ( A  x.  ( A Yrm  N ) ) ) )
8438, 83mpbid 210 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
2  x.  ( A Yrm  N ) )  <_  ( A  x.  ( A Yrm  N
) ) )
8515, 70, 8, 84lesub1dd 9967 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( 2  x.  ( A Yrm 
N ) )  -  ( A Yrm  ( N  - 
1 ) ) )  <_  ( ( A  x.  ( A Yrm  N ) )  -  ( A Yrm  ( N  -  1 ) ) ) )
86 rmym1 29288 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm  ( N  -  1 ) )  =  ( ( ( A Yrm  N )  x.  A )  -  ( A Xrm  N ) ) )
871, 86sylan2 474 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Yrm  ( N  -  1 ) )  =  ( ( ( A Yrm  N )  x.  A )  -  ( A Xrm  N ) ) )
8864, 40mulcomd 9419 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  N )  x.  A )  =  ( A  x.  ( A Yrm  N ) ) )
8988oveq1d 6118 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( ( A Yrm  N )  x.  A )  -  ( A Xrm  N ) )  =  ( ( A  x.  ( A Yrm  N ) )  -  ( A Xrm  N ) ) )
9087, 89eqtr2d 2476 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A  x.  ( A Yrm 
N ) )  -  ( A Xrm  N ) )  =  ( A Yrm  ( N  -  1 ) ) )
9170recnd 9424 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A  x.  ( A Yrm  N
) )  e.  CC )
9220recnd 9424 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  CC )
93 subsub23 9627 . . . . 5  |-  ( ( ( A  x.  ( A Yrm 
N ) )  e.  CC  /\  ( A Xrm  N )  e.  CC  /\  ( A Yrm  ( N  - 
1 ) )  e.  CC )  ->  (
( ( A  x.  ( A Yrm  N ) )  -  ( A Xrm  N ) )  =  ( A Yrm  ( N  -  1 ) )  <->  ( ( A  x.  ( A Yrm  N ) )  -  ( A Yrm  ( N  -  1 ) ) )  =  ( A Xrm  N ) ) )
9491, 92, 41, 93syl3anc 1218 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( ( A  x.  ( A Yrm  N ) )  -  ( A Xrm  N ) )  =  ( A Yrm  ( N  -  1 ) )  <->  ( ( A  x.  ( A Yrm  N ) )  -  ( A Yrm  ( N  -  1 ) ) )  =  ( A Xrm  N ) ) )
9590, 94mpbid 210 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A  x.  ( A Yrm 
N ) )  -  ( A Yrm  ( N  - 
1 ) ) )  =  ( A Xrm  N ) )
9685, 95breqtrd 4328 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( 2  x.  ( A Yrm 
N ) )  -  ( A Yrm  ( N  - 
1 ) ) )  <_  ( A Xrm  N ) )
9712, 16, 20, 69, 96ltletrd 9543 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4304   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    + caddc 9297    x. cmul 9299    < clt 9430    <_ cle 9431    - cmin 9607   NNcn 10334   2c2 10383   NN0cn0 10591   ZZcz 10658   ZZ>=cuz 10873   Xrm crmx 29253   Yrm crmy 29254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-omul 6937  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-acn 8124  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ioc 11317  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-sum 13176  df-ef 13365  df-sin 13367  df-cos 13368  df-pi 13370  df-dvds 13548  df-gcd 13703  df-numer 13825  df-denom 13826  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-submnd 15477  df-mulg 15560  df-cntz 15847  df-cmn 16291  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-limc 21353  df-dv 21354  df-log 22020  df-squarenn 29194  df-pell1qr 29195  df-pell14qr 29196  df-pell1234qr 29197  df-pellfund 29198  df-rmx 29255  df-rmy 29256
This theorem is referenced by:  jm2.24  29318
  Copyright terms: Public domain W3C validator