Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24 Structured version   Unicode version

Theorem jm2.24 30492
Description: Lemma 2.24 of [JonesMatijasevic] p. 697 extended to  ZZ. Could be eliminated with a more careful proof of jm2.26lem3 30536. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )

Proof of Theorem jm2.24
StepHypRef Expression
1 simpll 753 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  A  e.  (
ZZ>= `  2 ) )
2 peano2zm 10895 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
32ad2antlr 726 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( N  - 
1 )  e.  ZZ )
4 frmy 30441 . . . . . . 7  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
54fovcl 6382 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
61, 3, 5syl2anc 661 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  ( N  -  1 ) )  e.  ZZ )
76zred 10955 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  ( N  -  1 ) )  e.  RR )
84fovcl 6382 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
98zred 10955 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  RR )
109adantr 465 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  N )  e.  RR )
117, 10readdcld 9612 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  e.  RR )
12 0re 9585 . . . 4  |-  0  e.  RR
1312a1i 11 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  e.  RR )
14 frmx 30440 . . . . . 6  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1514fovcl 6382 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
1615adantr 465 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Xrm  N )  e.  NN0 )
1716nn0red 10842 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Xrm  N )  e.  RR )
18 znegcl 10887 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
1918ad2antlr 726 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  -u N  e.  ZZ )
2019peano2zd 10958 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( -u N  +  1 )  e.  ZZ )
214fovcl 6382 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( -u N  +  1 )  e.  ZZ )  -> 
( A Yrm  ( -u N  +  1 ) )  e.  ZZ )
221, 20, 21syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  ( -u N  +  1 ) )  e.  ZZ )
2322zred 10955 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  ( -u N  +  1 ) )  e.  RR )
244fovcl 6382 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  -u N  e.  ZZ )  ->  ( A Yrm  -u N )  e.  ZZ )
251, 19, 24syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  -u N
)  e.  ZZ )
2625zred 10955 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  -u N
)  e.  RR )
27 rmy0 30456 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
2827ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  0 )  =  0 )
29 simpr 461 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  N  <_  0
)
30 zre 10857 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  RR )
3130ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  N  e.  RR )
3231le0neg1d 10113 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( N  <_ 
0  <->  0  <_  -u N
) )
3329, 32mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <_  -u N
)
34 0zd 10865 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  e.  ZZ )
35 zleltp1 10902 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( 0  <_  -u N  <->  0  <  ( -u N  +  1 ) ) )
3634, 19, 35syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( 0  <_  -u N  <->  0  <  ( -u N  +  1 ) ) )
3733, 36mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <  ( -u N  +  1 ) )
38 ltrmy 30481 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  ( -u N  +  1 )  e.  ZZ )  -> 
( 0  <  ( -u N  +  1 )  <-> 
( A Yrm  0 )  < 
( A Yrm  ( -u N  +  1 ) ) ) )
391, 34, 20, 38syl3anc 1223 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( 0  < 
( -u N  +  1 )  <->  ( A Yrm  0 )  <  ( A Yrm  ( -u N  +  1 ) ) ) )
4037, 39mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  0 )  <  ( A Yrm  ( -u N  +  1 ) ) )
4128, 40eqbrtrrd 4462 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <  ( A Yrm  ( -u N  + 
1 ) ) )
42 lermy 30484 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  -u N  e.  ZZ )  ->  (
0  <_  -u N  <->  ( A Yrm  0 )  <_  ( A Yrm  -u N ) ) )
431, 34, 19, 42syl3anc 1223 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( 0  <_  -u N  <->  ( A Yrm  0 )  <_  ( A Yrm  -u N
) ) )
4433, 43mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  0 )  <_  ( A Yrm  -u N
) )
4528, 44eqbrtrrd 4462 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <_  ( A Yrm  -u N ) )
46 addgtge0 10029 . . . . . 6  |-  ( ( ( ( A Yrm  ( -u N  +  1 ) )  e.  RR  /\  ( A Yrm  -u N )  e.  RR )  /\  (
0  <  ( A Yrm  (
-u N  +  1 ) )  /\  0  <_  ( A Yrm  -u N ) ) )  ->  0  <  ( ( A Yrm  ( -u N  +  1 ) )  +  ( A Yrm  -u N
) ) )
4723, 26, 41, 45, 46syl22anc 1224 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <  (
( A Yrm  ( -u N  +  1 ) )  +  ( A Yrm  -u N
) ) )
487recnd 9611 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  ( N  -  1 ) )  e.  CC )
4910recnd 9611 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  N )  e.  CC )
5048, 49negdid 9932 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  -u ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  =  (
-u ( A Yrm  ( N  -  1 ) )  +  -u ( A Yrm  N ) ) )
51 rmyneg 30455 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  -u ( N  - 
1 ) )  = 
-u ( A Yrm  ( N  -  1 ) ) )
521, 3, 51syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  -u ( N  -  1 ) )  =  -u ( A Yrm  ( N  -  1 ) ) )
53 rmyneg 30455 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm  -u N )  =  -u ( A Yrm  N ) )
5453adantr 465 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  -u N
)  =  -u ( A Yrm 
N ) )
5552, 54oveq12d 6293 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( ( A Yrm  -u ( N  -  1 ) )  +  ( A Yrm  -u N ) )  =  ( -u ( A Yrm  ( N  -  1 ) )  +  -u ( A Yrm  N ) ) )
56 zcn 10858 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
5756ad2antlr 726 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  N  e.  CC )
58 ax-1cn 9539 . . . . . . . . 9  |-  1  e.  CC
59 negsubdi 9864 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  -> 
-u ( N  - 
1 )  =  (
-u N  +  1 ) )
6057, 58, 59sylancl 662 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  -u ( N  - 
1 )  =  (
-u N  +  1 ) )
6160oveq2d 6291 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( A Yrm  -u ( N  -  1 ) )  =  ( A Yrm  (
-u N  +  1 ) ) )
6261oveq1d 6290 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( ( A Yrm  -u ( N  -  1 ) )  +  ( A Yrm  -u N ) )  =  ( ( A Yrm  (
-u N  +  1 ) )  +  ( A Yrm  -u N ) ) )
6350, 55, 623eqtr2d 2507 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  -u ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  =  ( ( A Yrm  ( -u N  +  1 ) )  +  ( A Yrm  -u N
) ) )
6447, 63breqtrrd 4466 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <  -u (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) ) )
6511lt0neg1d 10111 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  0  <->  0  <  -u (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) ) ) )
6664, 65mpbird 232 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  0
)
6716nn0ge0d 10844 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  0  <_  ( A Xrm 
N ) )
6811, 13, 17, 66, 67ltletrd 9730 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  N  <_  0 )  ->  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm 
N ) )
69 simpll 753 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  0  <  N )  ->  A  e.  (
ZZ>= `  2 ) )
70 elnnz 10863 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
7170biimpri 206 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <  N )  ->  N  e.  NN )
7271adantll 713 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  0  <  N )  ->  N  e.  NN )
73 jm2.24nn 30488 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
7469, 72, 73syl2anc 661 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ )  /\  0  <  N )  ->  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm 
N ) )
7530adantl 466 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  N  e.  RR )
76 lelttric 9680 . . 3  |-  ( ( N  e.  RR  /\  0  e.  RR )  ->  ( N  <_  0  \/  0  <  N ) )
7775, 12, 76sylancl 662 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( N  <_  0  \/  0  <  N ) )
7868, 74, 77mpjaodan 784 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    - cmin 9794   -ucneg 9795   NNcn 10525   2c2 10574   NN0cn0 10784   ZZcz 10853   ZZ>=cuz 11071   Xrm crmx 30427   Yrm crmy 30428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-omul 7125  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-acn 8312  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-sum 13458  df-ef 13654  df-sin 13656  df-cos 13657  df-pi 13659  df-dvds 13837  df-gcd 13993  df-numer 14116  df-denom 14117  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665  df-squarenn 30368  df-pell1qr 30369  df-pell14qr 30370  df-pell1234qr 30371  df-pellfund 30372  df-rmx 30429  df-rmy 30430
This theorem is referenced by:  jm2.26lem3  30536
  Copyright terms: Public domain W3C validator