Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Unicode version

Theorem jm2.23 29298
Description: Lemma for jm2.20nn 29299. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )

Proof of Theorem jm2.23
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 11786 . . . . . 6  |-  ( 3 ... J )  e. 
Fin
2 ssrab2 3432 . . . . . 6  |-  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  C_  ( 3 ... J
)
3 ssfi 7525 . . . . . 6  |-  ( ( ( 3 ... J
)  e.  Fin  /\  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  C_  ( 3 ... J ) )  ->  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin )
41, 2, 3mp2an 672 . . . . 5  |-  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin
54a1i 11 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin )
6 nnnn0 10578 . . . . . . . 8  |-  ( J  e.  NN  ->  J  e.  NN0 )
763ad2ant3 1011 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  e.  NN0 )
82sseli 3347 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  a  e.  ( 3 ... J
) )
9 elfzelz 11445 . . . . . . . 8  |-  ( a  e.  ( 3 ... J )  ->  a  e.  ZZ )
108, 9syl 16 . . . . . . 7  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  a  e.  ZZ )
11 bccl 12090 . . . . . . 7  |-  ( ( J  e.  NN0  /\  a  e.  ZZ )  ->  ( J  _C  a
)  e.  NN0 )
127, 10, 11syl2an 477 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e. 
NN0 )
1312nn0zd 10737 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  ZZ )
14 simpl1 991 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  A  e.  ( ZZ>= `  2 )
)
15 simpl2 992 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  N  e.  ZZ )
16 frmx 29207 . . . . . . . . . 10  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1716fovcl 6190 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
1814, 15, 17syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  NN0 )
1918nn0zd 10737 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  ZZ )
208adantl 466 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  ( 3 ... J
) )
21 fznn0sub 11479 . . . . . . . 8  |-  ( a  e.  ( 3 ... J )  ->  ( J  -  a )  e.  NN0 )
2220, 21syl 16 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  -  a )  e.  NN0 )
23 zexpcl 11872 . . . . . . 7  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( J  -  a )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  ZZ )
2419, 22, 23syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  ZZ )
25 rmspecnonsq 29201 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
2625eldifad 3335 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  NN )
2726nnzd 10738 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ZZ )
28273ad2ant1 1009 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
29 breq2 4291 . . . . . . . . . . . . . 14  |-  ( b  =  a  ->  (
2  ||  b  <->  2  ||  a ) )
3029notbid 294 . . . . . . . . . . . . 13  |-  ( b  =  a  ->  ( -.  2  ||  b  <->  -.  2  ||  a ) )
3130elrab 3112 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  <->  ( a  e.  ( 3 ... J
)  /\  -.  2  ||  a ) )
3231simprbi 464 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  a )
33 1z 10668 . . . . . . . . . . . 12  |-  1  e.  ZZ
3433a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  1  e.  ZZ )
35 n2dvds1 13574 . . . . . . . . . . . 12  |-  -.  2  ||  1
3635a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  1 )
37 omoe 13871 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ  /\ 
-.  2  ||  a
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  (
a  -  1 ) )
3810, 32, 34, 36, 37syl22anc 1219 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  ||  ( a  -  1 ) )
39 2z 10670 . . . . . . . . . . . 12  |-  2  e.  ZZ
4039a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  e.  ZZ )
41 2ne0 10406 . . . . . . . . . . . 12  |-  2  =/=  0
4241a1i 11 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  =/=  0 )
43 peano2zm 10680 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  (
a  -  1 )  e.  ZZ )
4410, 43syl 16 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  ZZ )
45 dvdsval2 13530 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
a  -  1 )  e.  ZZ )  -> 
( 2  ||  (
a  -  1 )  <-> 
( ( a  - 
1 )  /  2
)  e.  ZZ ) )
4640, 42, 44, 45syl3anc 1218 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
2  ||  ( a  -  1 )  <->  ( (
a  -  1 )  /  2 )  e.  ZZ ) )
4738, 46mpbid 210 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  ZZ )
4844zred 10739 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  RR )
49 0re 9378 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  0  e.  RR )
51 3re 10387 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
5251a1i 11 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  3  e.  RR )
539zred 10739 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  a  e.  RR )
54 3pos 10407 . . . . . . . . . . . . . . . 16  |-  0  <  3
5554a1i 11 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  0  <  3 )
56 elfzle1 11446 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  3  <_  a )
5750, 52, 53, 55, 56ltletrd 9523 . . . . . . . . . . . . . 14  |-  ( a  e.  ( 3 ... J )  ->  0  <  a )
58 elnnz 10648 . . . . . . . . . . . . . 14  |-  ( a  e.  NN  <->  ( a  e.  ZZ  /\  0  < 
a ) )
599, 57, 58sylanbrc 664 . . . . . . . . . . . . 13  |-  ( a  e.  ( 3 ... J )  ->  a  e.  NN )
60 nnm1nn0 10613 . . . . . . . . . . . . 13  |-  ( a  e.  NN  ->  (
a  -  1 )  e.  NN0 )
6159, 60syl 16 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  1 )  e.  NN0 )
6261nn0ge0d 10631 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  0  <_  ( a  -  1 ) )
638, 62syl 16 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( a  -  1 ) )
64 2re 10383 . . . . . . . . . . 11  |-  2  e.  RR
6564a1i 11 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  e.  RR )
66 2pos 10405 . . . . . . . . . . 11  |-  0  <  2
6766a1i 11 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <  2 )
68 divge0 10190 . . . . . . . . . 10  |-  ( ( ( ( a  - 
1 )  e.  RR  /\  0  <_  ( a  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
a  -  1 )  /  2 ) )
6948, 63, 65, 67, 68syl22anc 1219 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( ( a  - 
1 )  /  2
) )
70 elnn0z 10651 . . . . . . . . 9  |-  ( ( ( a  -  1 )  /  2 )  e.  NN0  <->  ( ( ( a  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( a  - 
1 )  /  2
) ) )
7147, 69, 70sylanbrc 664 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  NN0 )
72 zexpcl 11872 . . . . . . . 8  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( ( a  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  e.  ZZ )
7328, 71, 72syl2an 477 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  ZZ )
74 frmy 29208 . . . . . . . . . 10  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
7574fovcl 6190 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
7614, 15, 75syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Yrm 
N )  e.  ZZ )
77 elfzel1 11444 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  3  e.  ZZ )
789, 77zsubcld 10744 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  3 )  e.  ZZ )
79 subge0 9844 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  3  e.  RR )  ->  ( 0  <_  (
a  -  3 )  <->  3  <_  a )
)
8053, 51, 79sylancl 662 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  (
0  <_  ( a  -  3 )  <->  3  <_  a ) )
8156, 80mpbird 232 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  0  <_  ( a  -  3 ) )
82 elnn0z 10651 . . . . . . . . . . 11  |-  ( ( a  -  3 )  e.  NN0  <->  ( ( a  -  3 )  e.  ZZ  /\  0  <_ 
( a  -  3 ) ) )
8378, 81, 82sylanbrc 664 . . . . . . . . . 10  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  3 )  e.  NN0 )
848, 83syl 16 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  3 )  e.  NN0 )
8584adantl 466 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
a  -  3 )  e.  NN0 )
86 zexpcl 11872 . . . . . . . 8  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( a  -  3 )  e. 
NN0 )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  ZZ )
8776, 85, 86syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  ZZ )
8873, 87zmulcld 10745 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) )  e.  ZZ )
8924, 88zmulcld 10745 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  e.  ZZ )
9013, 89zmulcld 10745 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  e.  ZZ )
915, 90fsumzcl 13204 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  ZZ )
92753adant3 1008 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
93 3nn0 10589 . . . 4  |-  3  e.  NN0
94 zexpcl 11872 . . . 4  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
9592, 93, 94sylancl 662 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
96 dvdsmul2 13547 . . 3  |-  ( (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
3 )  ||  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
9791, 95, 96syl2anc 661 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
98 jm2.22 29297 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )
996, 98syl3an3 1253 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )
100 1lt3 10482 . . . . . . . . . . . 12  |-  1  <  3
101 1re 9377 . . . . . . . . . . . . 13  |-  1  e.  RR
102101, 51ltnlei 9487 . . . . . . . . . . . 12  |-  ( 1  <  3  <->  -.  3  <_  1 )
103100, 102mpbi 208 . . . . . . . . . . 11  |-  -.  3  <_  1
104 elfzle1 11446 . . . . . . . . . . 11  |-  ( 1  e.  ( 3 ... J )  ->  3  <_  1 )
105103, 104mto 176 . . . . . . . . . 10  |-  -.  1  e.  ( 3 ... J
)
106105a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  1  e.  ( 3 ... J ) )
107106intnanrd 908 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  ( 1  e.  ( 3 ... J )  /\  -.  2  ||  1 ) )
108 breq2 4291 . . . . . . . . . 10  |-  ( b  =  1  ->  (
2  ||  b  <->  2  ||  1 ) )
109108notbid 294 . . . . . . . . 9  |-  ( b  =  1  ->  ( -.  2  ||  b  <->  -.  2  ||  1 ) )
110109elrab 3112 . . . . . . . 8  |-  ( 1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  <->  ( 1  e.  ( 3 ... J )  /\  -.  2  ||  1 ) )
111107, 110sylnibr 305 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b } )
112 disjsn 3931 . . . . . . 7  |-  ( ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  i^i  { 1 } )  =  (/)  <->  -.  1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b } )
113111, 112sylibr 212 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  i^i  { 1 } )  =  (/) )
114 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =  1 )  ->  a  =  1 )
115114olcd 393 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =  1 )  ->  ( ( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
116 elfznn0 11473 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... J )  ->  a  e.  NN0 )
117116adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  e.  NN0 )
118117ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  NN0 )
119 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  ->  -.  2  ||  a )
120 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  =/=  1 )
121 elnn1uz2 10923 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN  <->  ( a  =  1  \/  a  e.  ( ZZ>= `  2 )
) )
122 df-ne 2603 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =/=  1  <->  -.  a  =  1 )
123122biimpi 194 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =/=  1  ->  -.  a  =  1 )
1241233ad2ant3 1011 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  ->  -.  a  =  1
)
125124pm2.21d 106 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
( a  =  1  ->  3  <_  a
) )
126125imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
1 )  ->  3  <_  a )
127 uzp1 10886 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( ZZ>= `  2
)  ->  ( a  =  2  \/  a  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )
128 dvdsmul1 13546 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  2  ||  ( 2  x.  1 ) )
12939, 33, 128mp2an 672 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  ||  ( 2  x.  1 )
130 2cn 10384 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  CC
131130mulid1i 9380 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
132129, 131breqtri 4310 . . . . . . . . . . . . . . . . . . . . 21  |-  2  ||  2
133 breq2 4291 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  2  ->  (
2  ||  a  <->  2  ||  2 ) )
134133adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  (
2  ||  a  <->  2  ||  2 ) )
135132, 134mpbiri 233 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  2  ||  a )
136 simpl2 992 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  -.  2  ||  a )
137135, 136pm2.21dd 174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  3  <_  a )
138 eluzle 10865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  e.  ( ZZ>= `  3
)  ->  3  <_  a )
139 2p1e3 10437 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  +  1 )  =  3
140139fveq2i 5689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ZZ>= `  ( 2  +  1 ) )  =  (
ZZ>= `  3 )
141138, 140eleq2s 2530 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  ( ZZ>= `  (
2  +  1 ) )  ->  3  <_  a )
142141adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  ( ZZ>= `  ( 2  +  1 ) ) )  ->  3  <_  a )
143137, 142jaodan 783 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  ( a  =  2  \/  a  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )  ->  3  <_  a )
144127, 143sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  ( ZZ>= `  2 )
)  ->  3  <_  a )
145126, 144jaodan 783 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  ( a  =  1  \/  a  e.  ( ZZ>= `  2 )
) )  ->  3  <_  a )
146121, 145sylan2b 475 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  NN )  ->  3  <_ 
a )
147 dvds0 13540 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  ZZ  ->  2  ||  0 )
14839, 147ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  2  ||  0
149 breq2 4291 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  0  ->  (
2  ||  a  <->  2  ||  0 ) )
150148, 149mpbiri 233 . . . . . . . . . . . . . . . . 17  |-  ( a  =  0  ->  2  ||  a )
151150adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  2  ||  a )
152 simpl2 992 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  -.  2  ||  a )
153151, 152pm2.21dd 174 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  3  <_  a )
154 elnn0 10573 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  NN0  <->  ( a  e.  NN  \/  a  =  0 ) )
155154biimpi 194 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  ( a  e.  NN  \/  a  =  0 ) )
1561553ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
( a  e.  NN  \/  a  =  0
) )
157146, 153, 156mpjaodan 784 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
3  <_  a )
158118, 119, 120, 157syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
3  <_  a )
159 elfzle2 11447 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 0 ... J )  ->  a  <_  J )
160159adantr 465 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  <_  J
)
161160ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  <_  J )
162 elfzelz 11445 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... J )  ->  a  e.  ZZ )
163162adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  e.  ZZ )
164163ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  ZZ )
165 3z 10671 . . . . . . . . . . . . . . 15  |-  3  e.  ZZ
166165a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
3  e.  ZZ )
167 nnz 10660 . . . . . . . . . . . . . . . 16  |-  ( J  e.  NN  ->  J  e.  ZZ )
1681673ad2ant3 1011 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  e.  ZZ )
169168ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  ->  J  e.  ZZ )
170 elfz 11435 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  3  e.  ZZ  /\  J  e.  ZZ )  ->  (
a  e.  ( 3 ... J )  <->  ( 3  <_  a  /\  a  <_  J ) ) )
171164, 166, 169, 170syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( a  e.  ( 3 ... J )  <-> 
( 3  <_  a  /\  a  <_  J ) ) )
172158, 161, 171mpbir2and 913 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  ( 3 ... J ) )
173172, 119jca 532 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( a  e.  ( 3 ... J )  /\  -.  2  ||  a ) )
174173orcd 392 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( ( a  e.  ( 3 ... J
)  /\  -.  2  ||  a )  \/  a  =  1 ) )
175115, 174pm2.61dane 2684 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
a  e.  ( 0 ... J )  /\  -.  2  ||  a ) )  ->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
176 nn0uz 10887 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
17793, 176eleqtri 2510 . . . . . . . . . . . . . 14  |-  3  e.  ( ZZ>= `  0 )
178 fzss1 11489 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  0
)  ->  ( 3 ... J )  C_  ( 0 ... J
) )
179177, 178ax-mp 5 . . . . . . . . . . . . 13  |-  ( 3 ... J )  C_  ( 0 ... J
)
180179sseli 3347 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  a  e.  ( 0 ... J
) )
181180anim1i 568 . . . . . . . . . . 11  |-  ( ( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
182181adantl 466 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
a  e.  ( 3 ... J )  /\  -.  2  ||  a ) )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
183 0le1 9855 . . . . . . . . . . . . 13  |-  0  <_  1
184183a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
0  <_  1 )
185 nnge1 10340 . . . . . . . . . . . . . 14  |-  ( J  e.  NN  ->  1  <_  J )
1861853ad2ant3 1011 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  1  <_  J )
187186adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  <_  J )
18833a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  e.  ZZ )
189 0zd 10650 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
0  e.  ZZ )
190168adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  ->  J  e.  ZZ )
191 elfz 11435 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  0  e.  ZZ  /\  J  e.  ZZ )  ->  (
1  e.  ( 0 ... J )  <->  ( 0  <_  1  /\  1  <_  J ) ) )
192188, 189, 190, 191syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( 1  e.  ( 0 ... J )  <-> 
( 0  <_  1  /\  1  <_  J ) ) )
193184, 187, 192mpbir2and 913 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  e.  ( 0 ... J ) )
19435a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  ->  -.  2  ||  1 )
195 eleq1 2498 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  (
a  e.  ( 0 ... J )  <->  1  e.  ( 0 ... J
) ) )
196 breq2 4291 . . . . . . . . . . . . . 14  |-  ( a  =  1  ->  (
2  ||  a  <->  2  ||  1 ) )
197196notbid 294 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  ( -.  2  ||  a  <->  -.  2  ||  1 ) )
198195, 197anbi12d 710 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  <->  ( 1  e.  ( 0 ... J )  /\  -.  2  ||  1 ) ) )
199198adantl 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a )  <->  ( 1  e.  ( 0 ... J )  /\  -.  2  ||  1 ) ) )
200193, 194, 199mpbir2and 913 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( a  e.  ( 0 ... J )  /\  -.  2  ||  a ) )
201182, 200jaodan 783 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
202175, 201impbida 828 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) ) )
20330elrab 3112 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  <->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
204 elun 3492 . . . . . . . . 9  |-  ( a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } )  <->  ( a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  \/  a  e.  { 1 } ) )
205 elsn 3886 . . . . . . . . . 10  |-  ( a  e.  { 1 }  <-> 
a  =  1 )
20631, 205orbi12i 521 . . . . . . . . 9  |-  ( ( a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  \/  a  e.  { 1 } )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
207204, 206bitri 249 . . . . . . . 8  |-  ( a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
208202, 203, 2073bitr4g 288 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  <->  a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } ) ) )
209208eqrdv 2436 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  =  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } ) )
210 fzfi 11786 . . . . . . . 8  |-  ( 0 ... J )  e. 
Fin
211 ssrab2 3432 . . . . . . . 8  |-  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  C_  ( 0 ... J
)
212 ssfi 7525 . . . . . . . 8  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  C_  ( 0 ... J ) )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin )
213210, 211, 212mp2an 672 . . . . . . 7  |-  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin
214213a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin )
215211sseli 3347 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  ( 0 ... J
) )
216215, 162syl 16 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  ZZ )
2177, 216, 11syl2an 477 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e. 
NN0 )
218217nn0cnd 10630 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  CC )
219173adant3 1008 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
220219nn0cnd 10630 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Xrm 
N )  e.  CC )
221220adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  CC )
222215adantl 466 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  a  e.  ( 0 ... J
) )
223 fznn0sub 11479 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... J )  ->  ( J  -  a )  e.  NN0 )
224222, 223syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  -  a )  e.  NN0 )
225221, 224expcld 12000 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  CC )
22692zcnd 10740 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
227215, 116syl 16 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  NN0 )
228 expcl 11875 . . . . . . . . . 10  |-  ( ( ( A Yrm  N )  e.  CC  /\  a  e. 
NN0 )  ->  (
( A Yrm  N ) ^
a )  e.  CC )
229226, 227, 228syl2an 477 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
a )  e.  CC )
230 rmspecpos 29210 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
231230rpcnd 11021 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
2322313ad2ant1 1009 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
233203simprbi 464 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  a )
23433a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  1  e.  ZZ )
23535a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  1 )
236216, 233, 234, 235, 37syl22anc 1219 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  ||  ( a  -  1 ) )
23739a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  e.  ZZ )
23841a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  =/=  0 )
239216, 43syl 16 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  ZZ )
240237, 238, 239, 45syl3anc 1218 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
2  ||  ( a  -  1 )  <->  ( (
a  -  1 )  /  2 )  e.  ZZ ) )
241236, 240mpbid 210 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  ZZ )
242239zred 10739 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  RR )
243150a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( 0 ... J )  ->  (
a  =  0  -> 
2  ||  a )
)
244243con3dimp 441 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  -.  a  = 
0 )
245203, 244sylbi 195 . . . . . . . . . . . . . . 15  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  a  =  0 )
246227, 155syl 16 . . . . . . . . . . . . . . 15  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  e.  NN  \/  a  =  0 ) )
247 orel2 383 . . . . . . . . . . . . . . 15  |-  ( -.  a  =  0  -> 
( ( a  e.  NN  \/  a  =  0 )  ->  a  e.  NN ) )
248245, 246, 247sylc 60 . . . . . . . . . . . . . 14  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  NN )
249248, 60syl 16 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  NN0 )
250249nn0ge0d 10631 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( a  -  1 ) )
25164a1i 11 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  e.  RR )
25266a1i 11 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <  2 )
253242, 250, 251, 252, 68syl22anc 1219 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( ( a  - 
1 )  /  2
) )
254241, 253, 70sylanbrc 664 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  NN0 )
255 expcl 11875 . . . . . . . . . 10  |-  ( ( ( ( A ^
2 )  -  1 )  e.  CC  /\  ( ( a  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  e.  CC )
256232, 254, 255syl2an 477 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  CC )
257229, 256mulcld 9398 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) )  e.  CC )
258225, 257mulcld 9398 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) )  e.  CC )
259218, 258mulcld 9398 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  e.  CC )
260113, 209, 214, 259fsumsplit 13208 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  +  sum_ a  e.  { 1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) ) ) )
261 expcl 11875 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  CC  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
262226, 93, 261sylancl 662 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
26390zcnd 10740 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  e.  CC )
2645, 262, 263fsummulc1 13244 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
26512nn0cnd 10630 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  CC )
266220adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  CC )
267266, 22expcld 12000 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  CC )
268232, 71, 255syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  CC )
269 expcl 11875 . . . . . . . . . . . . 13  |-  ( ( ( A Yrm  N )  e.  CC  /\  ( a  -  3 )  e. 
NN0 )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  CC )
270226, 84, 269syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  CC )
271268, 270mulcld 9398 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) )  e.  CC )
272267, 271mulcld 9398 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  e.  CC )
273262adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
274265, 272, 273mulassd 9401 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( J  _C  a )  x.  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( J  _C  a
)  x.  ( ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
275267, 271, 273mulassd 9401 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
276268, 270, 273mulassd 9401 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( ( A Yrm  N ) ^ ( a  -  3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
277270, 273mulcld 9398 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  e.  CC )
278268, 277mulcomd 9399 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( ( A Yrm  N ) ^
( a  -  3 ) )  x.  (
( A Yrm  N ) ^
3 ) ) )  =  ( ( ( ( A Yrm  N ) ^
( a  -  3 ) )  x.  (
( A Yrm  N ) ^
3 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) )
279226adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Yrm 
N )  e.  CC )
28093a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  3  e.  NN0 )
281279, 280, 85expaddd 12002 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( ( a  - 
3 )  +  3 ) )  =  ( ( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
28210adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  ZZ )
283282zcnd 10740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  CC )
284 3cn 10388 . . . . . . . . . . . . . . . . 17  |-  3  e.  CC
285 npcan 9611 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  CC  /\  3  e.  CC )  ->  ( ( a  - 
3 )  +  3 )  =  a )
286283, 284, 285sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( a  -  3 )  +  3 )  =  a )
287286oveq2d 6102 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( ( a  - 
3 )  +  3 ) )  =  ( ( A Yrm  N ) ^
a ) )
288281, 287eqtr3d 2472 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( A Yrm  N ) ^ a ) )
289288oveq1d 6101 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Yrm  N ) ^ ( a  -  3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) )  =  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) )
290276, 278, 2893eqtrd 2474 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) )
291290oveq2d 6102 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) ) )
292275, 291eqtrd 2470 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) ) )
293292oveq2d 6102 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )  =  ( ( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) ) )
294274, 293eqtrd 2470 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( J  _C  a )  x.  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) ) )
295294sumeq2dv 13172 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) ) )
296264, 295eqtr2d 2471 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) ) )
297 1nn 10325 . . . . . . 7  |-  1  e.  NN
298 bccl 12090 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  1  e.  ZZ )  ->  ( J  _C  1
)  e.  NN0 )
2996, 33, 298sylancl 662 . . . . . . . . . 10  |-  ( J  e.  NN  ->  ( J  _C  1 )  e. 
NN0 )
300299nn0cnd 10630 . . . . . . . . 9  |-  ( J  e.  NN  ->  ( J  _C  1 )  e.  CC )
3013003ad2ant3 1011 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  _C  1 )  e.  CC )
302 nnm1nn0 10613 . . . . . . . . . . 11  |-  ( J  e.  NN  ->  ( J  -  1 )  e.  NN0 )
3033023ad2ant3 1011 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  -  1 )  e.  NN0 )
304220, 303expcld 12000 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Xrm  N ) ^
( J  -  1 ) )  e.  CC )
305 1nn0 10587 . . . . . . . . . . 11  |-  1  e.  NN0
306 expcl 11875 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  CC  /\  1  e. 
NN0 )  ->  (
( A Yrm  N ) ^
1 )  e.  CC )
307226, 305, 306sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
1 )  e.  CC )
308 1m1e0 10382 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
309308oveq1i 6096 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
310130, 41div0i 10057 . . . . . . . . . . . . 13  |-  ( 0  /  2 )  =  0
311309, 310eqtri 2458 . . . . . . . . . . . 12  |-  ( ( 1  -  1 )  /  2 )  =  0
312 0nn0 10586 . . . . . . . . . . . 12  |-  0  e.  NN0
313311, 312eqeltri 2508 . . . . . . . . . . 11  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
314 expcl 11875 . . . . . . . . . . 11  |-  ( ( ( ( A ^
2 )  -  1 )  e.  CC  /\  ( ( 1  -  1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) )  e.  CC )
315232, 313, 314sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  e.  CC )
316307, 315mulcld 9398 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) )  e.  CC )
317304, 316mulcld 9398 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) )  e.  CC )
318301, 317mulcld 9398 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) )  e.  CC )
319 oveq2 6094 . . . . . . . . 9  |-  ( a  =  1  ->  ( J  _C  a )  =  ( J  _C  1
) )
320 oveq2 6094 . . . . . . . . . . 11  |-  ( a  =  1  ->  ( J  -  a )  =  ( J  - 
1 ) )
321320oveq2d 6102 . . . . . . . . . 10  |-  ( a  =  1  ->  (
( A Xrm  N ) ^
( J  -  a
) )  =  ( ( A Xrm  N ) ^
( J  -  1 ) ) )
322 oveq2 6094 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( A Yrm  N ) ^
a )  =  ( ( A Yrm  N ) ^
1 ) )
323 oveq1 6093 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  (
a  -  1 )  =  ( 1  -  1 ) )
324323oveq1d 6101 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
( a  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
325324oveq2d 6102 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  =  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) )
326322, 325oveq12d 6104 . . . . . . . . . 10  |-  ( a  =  1  ->  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) )  =  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) )
327321, 326oveq12d 6104 . . . . . . . . 9  |-  ( a  =  1  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
1 )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) ) ) ) )
328319, 327oveq12d 6104 . . . . . . . 8  |-  ( a  =  1  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
329328sumsn 13209 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) )  e.  CC )  ->  sum_ a  e.  {
1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )
330297, 318, 329sylancr 663 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { 1 }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
331296, 330oveq12d 6104 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  +  sum_ a  e.  {
1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )  =  ( ( sum_ a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ ( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  +  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) ) )
33299, 260, 3313eqtrd 2474 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm  ( N  x.  J
) )  =  ( ( sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) ) )
333 bcn1 12081 . . . . . . 7  |-  ( J  e.  NN0  ->  ( J  _C  1 )  =  J )
3347, 333syl 16 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  _C  1 )  =  J )
335334eqcomd 2443 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  =  ( J  _C  1 ) )
336226exp1d 11995 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
1 )  =  ( A Yrm  N ) )
337311a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( 1  -  1 )  /  2 )  =  0 )
338337oveq2d 6102 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  =  ( ( ( A ^ 2 )  -  1 ) ^
0 ) )
339232exp0d 11994 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ 0 )  =  1 )
340338, 339eqtrd 2470 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  =  1 )
341336, 340oveq12d 6104 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) )  =  ( ( A Yrm  N )  x.  1 ) )
342226mulid1d 9395 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N )  x.  1 )  =  ( A Yrm  N ) )
343341, 342eqtr2d 2471 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  =  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) )
344343oveq2d 6102 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
1 )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) ) ) ) )
345335, 344oveq12d 6104 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  x.  ( (
( A Xrm  N ) ^
( J  -  1 ) )  x.  ( A Yrm 
N ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
346332, 345oveq12d 6104 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )  -  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) ) ) )
3475, 263fsumcl 13202 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  CC )
348347, 262mulcld 9398 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  e.  CC )
349348, 318pncand 9712 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )  -  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) ) )  =  ( sum_ a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ ( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
350346, 349eqtrd 2470 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) ) )
35197, 350breqtrrd 4313 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   {crab 2714    u. cun 3321    i^i cin 3322    C_ wss 3323   (/)c0 3632   {csn 3872   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   2c2 10363   3c3 10364   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429   ^cexp 11857    _C cbc 12070   sum_csu 13155    || cdivides 13527  ◻NNcsquarenn 29130   Xrm crmx 29194   Yrm crmy 29195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-omul 6917  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-dvds 13528  df-gcd 13683  df-numer 13805  df-denom 13806  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-limc 21316  df-dv 21317  df-log 21983  df-squarenn 29135  df-pell1qr 29136  df-pell14qr 29137  df-pell1234qr 29138  df-pellfund 29139  df-rmx 29196  df-rmy 29197
This theorem is referenced by:  jm2.20nn  29299
  Copyright terms: Public domain W3C validator