Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Structured version   Unicode version

Theorem jm2.22 35814
Description: Lemma for jm2.20nn 35816. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
Distinct variable groups:    A, i, x    i, N, x    i, J, x

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 10962 . . . . 5  |-  ( J  e.  NN0  ->  J  e.  ZZ )
2 jm2.21 35813 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  ZZ )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
) )
31, 2syl3an3 1300 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
) )
4 frmx 35725 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
54fovcl 6413 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
653adant3 1026 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  NN0 )
76nn0cnd 10929 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  CC )
8 eluzelz 11170 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
9 zsqcl 12346 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 peano2zm 10982 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
118, 9, 103syl 18 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ZZ )
12113ad2ant1 1027 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
1312zcnd 11043 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
1413sqrtcld 13492 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
15 frmy 35726 . . . . . . . . 9  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
1615fovcl 6413 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
17163adant3 1026 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm 
N )  e.  ZZ )
1817zcnd 11043 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm 
N )  e.  CC )
1914, 18mulcld 9665 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
20 simp3 1008 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  J  e.  NN0 )
21 binom 13881 . . . . 5  |-  ( ( ( A Xrm  N )  e.  CC  /\  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC  /\  J  e.  NN0 )  -> 
( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
)  =  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) )
227, 19, 20, 21syl3anc 1265 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ^ J )  = 
sum_ i  e.  ( 0 ... J ) ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) ) )
23 rabnc 3787 . . . . . . 7  |-  ( { x  e.  ( 0 ... J )  |  2  ||  x }  i^i  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  =  (/)
2423a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( { x  e.  (
0 ... J )  |  2  ||  x }  i^i  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  =  (/) )
25 rabxm 3786 . . . . . . 7  |-  ( 0 ... J )  =  ( { x  e.  ( 0 ... J
)  |  2  ||  x }  u.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x } )
2625a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
0 ... J )  =  ( { x  e.  ( 0 ... J
)  |  2  ||  x }  u.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x } ) )
27 fzfid 12187 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
0 ... J )  e. 
Fin )
28 simpl3 1011 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  J  e.  NN0 )
29 elfzelz 11802 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  i  e.  ZZ )
3029adantl 468 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  ZZ )
31 bccl 12508 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  i  e.  ZZ )  ->  ( J  _C  i
)  e.  NN0 )
3231nn0zd 11040 . . . . . . . . 9  |-  ( ( J  e.  NN0  /\  i  e.  ZZ )  ->  ( J  _C  i
)  e.  ZZ )
3328, 30, 32syl2anc 666 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  _C  i )  e.  ZZ )
3433zcnd 11043 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  _C  i )  e.  CC )
356nn0zd 11040 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  ZZ )
3635adantr 467 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Xrm 
N )  e.  ZZ )
3736zcnd 11043 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Xrm 
N )  e.  CC )
38 fznn0sub 11833 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  ( J  -  i )  e.  NN0 )
3938adantl 468 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  -  i )  e.  NN0 )
4037, 39expcld 12417 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  CC )
4112adantr 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
4241zcnd 11043 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
4342sqrtcld 13492 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
4417adantr 467 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Yrm 
N )  e.  ZZ )
4544zcnd 11043 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Yrm 
N )  e.  CC )
4643, 45mulcld 9665 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
47 elfznn0 11889 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  i  e.  NN0 )
4847adantl 468 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  NN0 )
4946, 48expcld 12417 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  e.  CC )
5040, 49mulcld 9665 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) )  e.  CC )
5134, 50mulcld 9665 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) )  e.  CC )
5224, 26, 27, 51fsumsplit 13799 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  (
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) ) )
53 fzfi 12186 . . . . . . . . . 10  |-  ( 0 ... J )  e. 
Fin
54 ssrab2 3547 . . . . . . . . . 10  |-  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  C_  (
0 ... J )
55 ssfi 7796 . . . . . . . . . 10  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  C_  ( 0 ... J ) )  ->  { x  e.  (
0 ... J )  |  -.  2  ||  x }  e.  Fin )
5653, 54, 55mp2an 677 . . . . . . . . 9  |-  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  e.  Fin
5756a1i 11 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  e.  Fin )
58 breq2 4425 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
2  ||  x  <->  2  ||  i ) )
5958notbid 296 . . . . . . . . . 10  |-  ( x  =  i  ->  ( -.  2  ||  x  <->  -.  2  ||  i ) )
6059elrab 3230 . . . . . . . . 9  |-  ( i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  <->  ( i  e.  ( 0 ... J
)  /\  -.  2  ||  i ) )
6134adantrr 722 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( J  _C  i )  e.  CC )
6240adantrr 722 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Xrm 
N ) ^ ( J  -  i )
)  e.  CC )
63 zexpcl 12288 . . . . . . . . . . . . . . 15  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  i  e. 
NN0 )  ->  (
( A Yrm  N ) ^
i )  e.  ZZ )
6417, 47, 63syl2an 480 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Yrm  N ) ^
i )  e.  ZZ )
6564zcnd 11043 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Yrm  N ) ^
i )  e.  CC )
6665adantrr 722 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Yrm 
N ) ^ i
)  e.  CC )
6742adantrr 722 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
6829adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  ZZ )
69 simpr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  2  ||  i )
70 1zzd 10970 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  1  e.  ZZ )
71 n2dvds1 14347 . . . . . . . . . . . . . . . . . 18  |-  -.  2  ||  1
7271a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  2  ||  1 )
73 omoe 14755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ZZ  /\ 
-.  2  ||  i
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  (
i  -  1 ) )
7468, 69, 70, 72, 73syl22anc 1266 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  ||  (
i  -  1 ) )
75 2z 10971 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
7675a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  e.  ZZ )
77 2ne0 10704 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
7877a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  =/=  0
)
79 peano2zm 10982 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ZZ  ->  (
i  -  1 )  e.  ZZ )
8029, 79syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  ZZ )
8180adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  ZZ )
82 dvdsval2 14301 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
i  -  1 )  e.  ZZ )  -> 
( 2  ||  (
i  -  1 )  <-> 
( ( i  - 
1 )  /  2
)  e.  ZZ ) )
8376, 78, 81, 82syl3anc 1265 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( 2  ||  ( i  -  1 )  <->  ( ( i  -  1 )  / 
2 )  e.  ZZ ) )
8474, 83mpbid 214 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( ( i  -  1 )  / 
2 )  e.  ZZ )
8580zred 11042 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  RR )
8685adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  RR )
87 dvds0 14311 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  e.  ZZ  ->  2  ||  0 )
8875, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  ||  0
89 breq2 4425 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  0  ->  (
2  ||  i  <->  2  ||  0 ) )
9088, 89mpbiri 237 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  0  ->  2  ||  i )
9190con3i 141 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  2  ||  i  ->  -.  i  =  0
)
9291adantl 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  i  = 
0 )
9347adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  NN0 )
94 elnn0 10873 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  NN0  <->  ( i  e.  NN  \/  i  =  0 ) )
9593, 94sylib 200 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  e.  NN  \/  i  =  0 ) )
96 orel2 385 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  i  =  0  -> 
( ( i  e.  NN  \/  i  =  0 )  ->  i  e.  NN ) )
9792, 95, 96sylc 63 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  NN )
98 nnm1nn0 10913 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN  ->  (
i  -  1 )  e.  NN0 )
9997, 98syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  NN0 )
10099nn0ge0d 10930 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <_  (
i  -  1 ) )
101 2re 10681 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
102101a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  e.  RR )
103 2pos 10703 . . . . . . . . . . . . . . . . 17  |-  0  <  2
104103a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <  2
)
105 divge0 10476 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( i  - 
1 )  e.  RR  /\  0  <_  ( i  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
i  -  1 )  /  2 ) )
10686, 100, 102, 104, 105syl22anc 1266 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <_  (
( i  -  1 )  /  2 ) )
107 elnn0z 10952 . . . . . . . . . . . . . . 15  |-  ( ( ( i  -  1 )  /  2 )  e.  NN0  <->  ( ( ( i  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( i  - 
1 )  /  2
) ) )
10884, 106, 107sylanbrc 669 . . . . . . . . . . . . . 14  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( ( i  -  1 )  / 
2 )  e.  NN0 )
109108adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
i  -  1 )  /  2 )  e. 
NN0 )
11067, 109expcld 12417 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  e.  CC )
11166, 110mulcld 9665 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) )  e.  CC )
11262, 111mulcld 9665 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) )  e.  CC )
11361, 112mulcld 9665 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  CC )
11460, 113sylan2b 478 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) )  e.  CC )
11557, 14, 114fsummulc2 13838 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) )  = 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) ) ) )
11643adantrr 722 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  CC )
117116, 61, 112mul12d 9844 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  ( ( J  _C  i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) )
118116, 62, 111mul12d 9844 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
11943, 48expcld 12417 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  e.  CC )
120119adantrr 722 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
i )  e.  CC )
12166, 120mulcomd 9666 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
122116, 66, 110mul12d 9844 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) )
123 2nn0 10888 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  NN0
124123a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  e.  NN0 )
125116, 109, 124expmuld 12420 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
( 2  x.  (
( i  -  1 )  /  2 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( ( i  -  1 )  / 
2 ) ) )
12680zcnd 11043 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  CC )
127126ad2antrl 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( i  -  1 )  e.  CC )
128 2cnd 10684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  e.  CC )
12977a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  =/=  0 )
130127, 128, 129divcan2d 10387 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( 2  x.  ( ( i  -  1 )  / 
2 ) )  =  ( i  -  1 ) )
131130oveq2d 6319 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
( 2  x.  (
( i  -  1 )  /  2 ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) ) )
13267sqsqrtd 13494 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
2 )  =  ( ( A ^ 2 )  -  1 ) )
133132oveq1d 6318 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( ( i  -  1 )  / 
2 ) )  =  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )
134125, 131, 1333eqtr3rd 2473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) ) )
135134oveq1d 6318 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
136116, 110mulcomd 9666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )  =  ( ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) )  x.  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
13797adantl 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  i  e.  NN )
138 expm1t 12301 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  CC  /\  i  e.  NN )  ->  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ ( i  - 
1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
139116, 137, 138syl2anc 666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
i )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
140135, 136, 1393eqtr4d 2474 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) )
141140oveq2d 6319 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) )  =  ( ( ( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) ) )
142122, 141eqtrd 2464 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i ) ) )
14343, 45, 48mulexpd 12432 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
144143adantrr 722 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
145121, 142, 1443eqtr4d 2474 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) )
146145oveq2d 6319 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )
147118, 146eqtrd 2464 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )
148147oveq2d 6319 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) ) )  =  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
149117, 148eqtrd 2464 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  ( ( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
15060, 149sylan2b 478 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )  =  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) )
151150sumeq2dv 13762 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
152115, 151eqtr2d 2465 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )
153152oveq2d 6319 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sum_ i  e.  { x  e.  ( 0 ... J
)  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
15452, 153eqtrd 2464 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  (
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) ) )
1553, 22, 1543eqtrd 2468 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) ) )
156 rmspecsqrtnq 35718 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
1571563ad2ant1 1027 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
158 nn0ssq 11274 . . . . 5  |-  NN0  C_  QQ
159 simp1 1006 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  A  e.  ( ZZ>= `  2 )
)
160 simp2 1007 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  N  e.  ZZ )
16113ad2ant3 1029 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  J  e.  ZZ )
162160, 161zmulcld 11048 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( N  x.  J )  e.  ZZ )
1634fovcl 6413 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  J )  e.  ZZ )  ->  ( A Xrm  ( N  x.  J
) )  e.  NN0 )
164159, 162, 163syl2anc 666 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm  ( N  x.  J
) )  e.  NN0 )
165158, 164sseldi 3463 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm  ( N  x.  J
) )  e.  QQ )
166 zssq 11273 . . . . 5  |-  ZZ  C_  QQ
16715fovcl 6413 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  J )  e.  ZZ )  ->  ( A Yrm  ( N  x.  J
) )  e.  ZZ )
168159, 162, 167syl2anc 666 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  e.  ZZ )
169166, 168sseldi 3463 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  e.  QQ )
170 ssrab2 3547 . . . . . . . 8  |-  { x  e.  ( 0 ... J
)  |  2  ||  x }  C_  ( 0 ... J )
171 ssfi 7796 . . . . . . . 8  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { x  e.  ( 0 ... J )  |  2  ||  x }  C_  ( 0 ... J
) )  ->  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin )
17253, 170, 171mp2an 677 . . . . . . 7  |-  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin
173172a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin )
17458elrab 3230 . . . . . . 7  |-  ( i  e.  { x  e.  ( 0 ... J
)  |  2  ||  x }  <->  ( i  e.  ( 0 ... J
)  /\  2  ||  i ) )
17533adantrr 722 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( J  _C  i )  e.  ZZ )
176 zexpcl 12288 . . . . . . . . . . 11  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( J  -  i )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  ZZ )
17736, 39, 176syl2anc 666 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  ZZ )
178177adantrr 722 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A Xrm  N ) ^ ( J  -  i ) )  e.  ZZ )
17943adantrr 722 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  CC )
18045adantrr 722 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( A Yrm  N )  e.  CC )
18147ad2antrl 733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  i  e.  NN0 )
182179, 180, 181mulexpd 12432 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
18329zcnd 11043 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0 ... J )  ->  i  e.  CC )
184183adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  CC )
185 2cnd 10684 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  2  e.  CC )
18677a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  2  =/=  0 )
187184, 185, 186divcan2d 10387 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
2  x.  ( i  /  2 ) )  =  i )
188187eqcomd 2431 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  =  ( 2  x.  ( i  /  2
) ) )
189188adantrr 722 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  i  =  ( 2  x.  ( i  /  2 ) ) )
190189oveq2d 6319 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ i
)  =  ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ ( 2  x.  ( i  /  2
) ) ) )
19175a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  2  e.  ZZ )
19277a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  2  =/=  0 )
193 nn0z 10962 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  i  e.  ZZ )
194 dvdsval2 14301 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  i  e.  ZZ )  ->  (
2  ||  i  <->  ( i  /  2 )  e.  ZZ ) )
195191, 192, 193, 194syl3anc 1265 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN0  ->  ( 2 
||  i  <->  ( i  /  2 )  e.  ZZ ) )
196195biimpa 487 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
( i  /  2
)  e.  ZZ )
197 nn0re 10880 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  i  e.  RR )
198197adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
i  e.  RR )
199 nn0ge0 10897 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  0  <_ 
i )
200199adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <_  i )
201101a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
2  e.  RR )
202103a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <  2 )
203 divge0 10476 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( i  /  2 ) )
204198, 200, 201, 202, 203syl22anc 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <_  ( i  /  2 ) )
205 elnn0z 10952 . . . . . . . . . . . . . . . . 17  |-  ( ( i  /  2 )  e.  NN0  <->  ( ( i  /  2 )  e.  ZZ  /\  0  <_ 
( i  /  2
) ) )
206196, 204, 205sylanbrc 669 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
( i  /  2
)  e.  NN0 )
20747, 206sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  2  ||  i )  -> 
( i  /  2
)  e.  NN0 )
208207adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( i  / 
2 )  e.  NN0 )
209123a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  2  e.  NN0 )
210179, 208, 209expmuld 12420 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ (
2  x.  ( i  /  2 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( i  / 
2 ) ) )
21142adantrr 722 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
212211sqsqrtd 13494 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  -  1 ) )
213212oveq1d 6318 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ 2 ) ^
( i  /  2
) )  =  ( ( ( A ^
2 )  -  1 ) ^ ( i  /  2 ) ) )
214190, 210, 2133eqtrd 2468 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ i
)  =  ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) ) )
215214oveq1d 6318 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) ) )
216182, 215eqtrd 2464 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) ) )
217 zexpcl 12288 . . . . . . . . . . . 12  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( i  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
i  /  2 ) )  e.  ZZ )
21812, 207, 217syl2an 480 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( A ^ 2 )  -  1 ) ^
( i  /  2
) )  e.  ZZ )
21964adantrr 722 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A Yrm  N ) ^ i )  e.  ZZ )
220218, 219zmulcld 11048 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) )  e.  ZZ )
221216, 220eqeltrd 2511 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  e.  ZZ )
222178, 221zmulcld 11048 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) )  e.  ZZ )
223175, 222zmulcld 11048 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  ZZ )
224174, 223sylan2b 478 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) )  e.  ZZ )
225173, 224fsumzcl 13794 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  ZZ )
226166, 225sseldi 3463 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  QQ )
22733adantrr 722 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( J  _C  i )  e.  ZZ )
228177adantrr 722 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Xrm 
N ) ^ ( J  -  i )
)  e.  ZZ )
22964adantrr 722 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Yrm 
N ) ^ i
)  e.  ZZ )
230 zexpcl 12288 . . . . . . . . . . 11  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( ( i  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) )  e.  ZZ )
23112, 108, 230syl2an 480 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  e.  ZZ )
232229, 231zmulcld 11048 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) )  e.  ZZ )
233228, 232zmulcld 11048 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) )  e.  ZZ )
234227, 233zmulcld 11048 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  ZZ )
23560, 234sylan2b 478 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) )  e.  ZZ )
23657, 235fsumzcl 13794 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  ZZ )
237166, 236sseldi 3463 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  QQ )
238 qirropth 35720 . . . 4  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( A Xrm  ( N  x.  J ) )  e.  QQ  /\  ( A Yrm  ( N  x.  J
) )  e.  QQ )  /\  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  QQ  /\ 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  QQ ) )  ->  (
( ( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )  <-> 
( ( A Xrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
239157, 165, 169, 226, 237, 238syl122anc 1274 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( ( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )  <-> 
( ( A Xrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
240155, 239mpbid 214 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  = 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )
241240simprd 465 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   {crab 2780    \ cdif 3434    u. cun 3435    i^i cin 3436    C_ wss 3437   (/)c0 3762   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   Fincfn 7575   CCcc 9539   RRcr 9540   0cc0 9541   1c1 9542    + caddc 9544    x. cmul 9546    < clt 9677    <_ cle 9678    - cmin 9862    / cdiv 10271   NNcn 10611   2c2 10661   NN0cn0 10871   ZZcz 10939   ZZ>=cuz 11161   QQcq 11266   ...cfz 11786   ^cexp 12273    _C cbc 12488   sqrcsqrt 13290   sum_csu 13745    || cdvds 14298   Xrm crmx 35712   Yrm crmy 35713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-omul 7193  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-acn 8379  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ioc 11642  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-mod 12098  df-seq 12215  df-exp 12274  df-fac 12461  df-bc 12489  df-hash 12517  df-shft 13124  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ef 14114  df-sin 14116  df-cos 14117  df-pi 14119  df-dvds 14299  df-gcd 14462  df-numer 14677  df-denom 14678  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-nei 20106  df-lp 20144  df-perf 20145  df-cn 20235  df-cnp 20236  df-haus 20323  df-tx 20569  df-hmeo 20762  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947  df-xms 21327  df-ms 21328  df-tms 21329  df-cncf 21902  df-limc 22813  df-dv 22814  df-log 23498  df-squarenn 35650  df-pell1qr 35651  df-pell14qr 35652  df-pell1234qr 35653  df-pellfund 35654  df-rmx 35714  df-rmy 35715
This theorem is referenced by:  jm2.23  35815
  Copyright terms: Public domain W3C validator